Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

ROMP of supramolecular norbornene monomers containing β-cyclodextrin–ferrocene (/adamantane) inclusion complexes

Abstract

Through the use of N-[2′-ferrocenylformamido-ethyl]-cis-5-norbornene-exo-2,3-dicarboximide (NFc) and N-[2′-adamantylformamido-ethyl]-cis-5-norbornene-exo-2,3-dicarboximide (NAd), we report the fabrication of two novel supramolecular norbornene monomers, NFc@β-CD and NAd@β-CD, through β-cyclodextrin (β-CD)/ferrrocene(Fc)- and β-CD/adamantane (Ad)-based host–guest complexation. The formation and structure of the two monomers were verified by various techniques, such as 1H and 13C NMR, 2D NOESY, IR and UV–vis spectroscopic methods. The ROMP (ring-opening metathesis polymerization) feasibility of the two supramolecular monomers was further confirmed by the successful preparation of two homopolymers (P(NFc@β-CD) and P(NAd@β-CD)) and two diblock copolymers (PNFc-b-P(NAd@β-CD) and P(NFc@β-CD)-b-P(NAd@β-CD)). The prepared polymers were adequately analyzed using 1H and 13C NMR, IR, UV–vis, end-group analysis and GPC methods. Based on the obtained results, we believe that (1) both supramolecular monomers exhibited “living” and “controlled” ROMP reactions; (2) the β-CD/Fc and β-CD/Ad inclusion complexes were not disassembled during the ROMP reactions of the two supramolecular monomers; and (3) the functional groups of β-CD had a negligible effect on the catalytic activity of the third-generation Grubbs’ catalyst. In short, this work indicated that the direct ROMP of β-CD-containing supramolecular monomers was a feasible route for preparing supramolecular polynorbornene-based homopolymers and copolymers, and this route is expected to have great potential for the preparation of various supramolecular polynorbornenes and functional materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bielawski CW, Grubbs RH. Living ring-opening metathesis polymerization. Prog Polym Sci. 2007;32:1–29.

    Article  CAS  Google Scholar 

  2. Sutthasupa S, Shiotsuki M, Sanda F. Recent advances in ring-opening metathesis polymerization, and application to synthesis of functional materials. Polym J. 2010;42:905–15.

    Article  CAS  Google Scholar 

  3. Schrock RR. Synthesis of stereoregular polymers through ring-opening metathesis polymerization. Acc Chem Res. 2014;47:2457–66.

    Article  CAS  Google Scholar 

  4. Liu X, Liu FF, Liu WT, Gu HB. ROMP and MCP as versatile and forceful tools to fabricate dendronized polymers for functional applications. Polym Rev. 2020. https://doi.org/10.1080/15583724.2020.1723022.

  5. Leitgeb A, Wappel J, Slugovc C. The ROMP toolbox upgraded. Polymer. 2010;51:2927–46.

    Article  CAS  Google Scholar 

  6. Liu X, Lin W, Astruc D, Gu BH. Syntheses and applications of dendronized polymers. Prog Polym Sci. 2019;96:43–105.

    Article  CAS  Google Scholar 

  7. Liao LY, Liu J, Dreaden EC, Morton SW, Shopsowitz KE, Hammond PT, et al. A convergent synthetic platform for single-nanoparticle combination cancer therapy: ratiometric loading and controlled release of cisplatin, doxorubicin, and camptothecin. J Am Chem Soc. 2014;136:5896–9.

    Article  CAS  Google Scholar 

  8. Mukherjee S, Patra D, Dinda H, Chalkraborty I, Shashank L, Bhattacharyya R, et al. Super paramagnetic norbornene copolymer functionalized with biotin and doxorubicin: a potential unique site-specific theranostic agent. Macromolecules. 2016;49:2411–8.

    Article  CAS  Google Scholar 

  9. Liu X, Liu FF, Astruc D, Lin W, Gu HB. Highly-branched amphiphilic organometallic dendronized diblock copolymer: ROMP synthesis, self-assembly and long-term Au and Ag nanoparticle stabilizer for high-efficiency catalysis. Polymer. 2019;173:1–10.

    Article  CAS  Google Scholar 

  10. Liu X, Mu SD, Long YR, Qiu GR, Ling QJ, Gu HB, et al. Gold nanoparticles stabilized by 1,2,3-triazolyl dendronized polymers as highly eicient nanoreactors for the reduction of 4-nitrophenol. Catal Lett. 2019;149:544–51.

    Article  CAS  Google Scholar 

  11. Mu SD, Liu WT, Zhao L, Long YR, Gu HB. Antimicrobial AgNPs composites of gelatin hydrogels crosslinked by ferrocene-containing tetrablock terpolymer. Polymer. 2019;169:80–94.

    Article  CAS  Google Scholar 

  12. Dong M, Wessels MG, Lee JY, Su L, Wang H, Letteri RA, et al. Experiments and simulations of complex sugar-based coil−brush block polymer nanoassemblies in aqueous solution. ACS Nano. 2019;13:5147–62.

    Article  CAS  Google Scholar 

  13. Liang XL, Sen MK, Jee JA, Gelman O, Marine JE, Kan K, et al. Poly(oxanorbornenedicarboximide)s dendronized with amphiphilic poly(alkyl ether) dendrons. J Polym Sci Pol Chem. 2014;52:3221–39.

    Article  CAS  Google Scholar 

  14. Hanik N, Kilbinger AFM. Branched polymers via ROMP of termimers. Macromol Rapid Commun. 2016;37:532–8.

    Article  CAS  Google Scholar 

  15. Burts AO, Gao AX, Johnson JA. Brush-first synthesis of core- photodegradable miktoarm star polymers via ROMP: towards photoresponsive self- assemblies. Macromol Rapid Commun. 2014;35:168–73.

    Article  CAS  Google Scholar 

  16. Ding L, Li TJ, Li J, Song W. Azobenzene-incorporated single- and double-stranded polynorbornenes: facile synthesis and diverse photoresponsive property. Macromol Chem Phys. 2017;218:1700245.

    Article  Google Scholar 

  17. Chen J, Li HF, Zhang HC, Liao XJ, Han HJ, Zhang LD, et al. Blocking-cyclization technique for precise synthesis of cyclic polymers with regulated topology. Nat Commun. 2018;9:5310.

    Article  CAS  Google Scholar 

  18. Isono T, Sasamori T, Honda K, Mato Y, Yamamoto T, Tajima K, et al. Multicyclic polymer synthesis through controlled/living cyclopolymerization of α,ω-dinorbornenyl-functionalized macromonomers. Macromolecules. 2018;51:3855–64.

    Article  CAS  Google Scholar 

  19. Mato Y, Honda K, Tajima K, Yamamoto T, Isono T, Satoh T. A versatile synthetic strategy for macromolecular cages: intramolecular consecutive cyclization of star-shaped polymers. Chem Sci. 2019;10:440–6.

    Article  CAS  Google Scholar 

  20. Choi TL, Grubbs RH. Controlled living ring-opening-metathesis polymerization by a fast-initiating ruthenium catalyst. Angew Chem Int Ed. 2003;42:1743–6.

    Article  CAS  Google Scholar 

  21. Dragutan I, Dragutan V, Filip P, Simionescu BC, Demonceau A. ROMP synthesis of iron-containing organometallic polymers. Molecules. 2016;21:198.

    Article  Google Scholar 

  22. Gu HB, Ciganda R, Castel P, Moya S, Hernandez R, Ruiz J, et al. Tetrablock metallopolymer electrochromes. Angew Chem Int Ed. 2018;57:2204–8.

    Article  CAS  Google Scholar 

  23. Long YR, Song B, Shi CT, Liu WT, Gu HB. AuNPs composites of gelatin hydrogels crosslinked by ferrocene-containing polymer as recyclable supported catalysts. J Appl Polym Sci. 2020;137:48653.

    Article  CAS  Google Scholar 

  24. Ding L, Li J, Jiang RY, Wang LF, Song W, Zhu L. Noncovalently connected supramolecular metathesis graft copolymers: one-pot synthesis and self-assembly. Eur Polym J. 2019;112:670–7.

    Article  CAS  Google Scholar 

  25. Peng L, Liu SY, Feng AC, Yuan JY. Polymeric nanocarriers based on cyclodextrins for drug delivery:host−guest interaction as stimuli responsive linker. Mol Pharm. 2017;14:2475–86.

    Article  CAS  Google Scholar 

  26. Mu SD, Ling QJ, Liu X, Ruiz J, Astruc D, Gu HB. Supramolecular redox-responsive substrate carrier activity of a ferrocenyl Janus device. J Inorg Biochem. 2019;193:31–41.

    Article  CAS  Google Scholar 

  27. Chen X, Liu L, Huo M, Zeng M, Peng L, Feng AC, et al. Direct synthesis of polymer nanotubes by aqueous dispersion polymerization of a cyclodextrin/styrene complex. Angew Chem Int Ed. 2017;56:16541–5.

    Article  CAS  Google Scholar 

  28. Zhou N, Peng L, Salgado S, Yuan JY, Wang XS. Synthesis of air-stable cyclopentadienyl Fe(CO)(2) (Fp) polymers by a host-guest interaction of cyclodextrin with air-sensitive Fp pendant groups. Angew Chem Int Ed. 2017;56:6246–50.

    Article  CAS  Google Scholar 

  29. Schmidt BVKJ, Hetzer M, Ritter H, Barner-Kowollik C. Cyclodextrin-complexed RAFT agents for the ambient temperature aqueous living/controlled radical polymerization of acrylamido monomers. Macromolecules. 2011;44:7220–32.

    Article  CAS  Google Scholar 

  30. Ritter H, Mondrzik BE, Rehahn M, Gallei M. Free radical homopolymerization of a vinylferrocene/cyclodextrin complex in water. Beilstein J Org Chem. 2010;6:60.

    PubMed  PubMed Central  Google Scholar 

  31. Wang LY, Cheng PZ, Guo MY. Stretchable and functional supramolecular hydrogels based on the template effect of poly(β-cyclodextrin). Acta Polym Sin. 2018;49:1097–106.

    Google Scholar 

  32. Qiu GR, Liu X, Wang BR, Gu HB, Wang WX. Ferrocene-containing amphiphilic polynorbornenes as biocompatible drug carriers. Polym Chem. 2019;10:2527–39.

    Article  CAS  Google Scholar 

  33. Zhang L, Qiu GR, Liu FF, Liu X, Mu SD, Long YR, et al. Controlled ROMP synthesis of side-chain ferrocene and adamantane-containing diblock copolymer for the construction of redox-responsive micellar carriers. React Funct Polym. 2018;132:60–73.

    Article  CAS  Google Scholar 

  34. Liu X, Liu FF, Wang YL, Gu HB. Ferrocene-containing amphiphilic dendronized random copolymer as efficient stabilizer for reusable gold nanoparticles in catalysis. React Funct Polym. 2019;143:104325.

    Article  CAS  Google Scholar 

  35. Li L, Guo XH, Wang J, Liu P, Prud’homme RK, May BL, et al. Polymer networks assembled by host-guest inclusion between adamantyl and beta-cyclodextrin substituents on poly(acrylic acid) in aqueous solution. Macromolecules. 2008;41:8677–81.

    Article  CAS  Google Scholar 

  36. Szillat F, Schmidt BVKJ, Hubert A, et al. Redox-switchable supramolecular graft polymer formation via ferrocene-cyclodextrin assembly. Macromol Rapid Commun. 2014;35:1293–300.

    Article  CAS  Google Scholar 

  37. Jiang B, Guo HC, Zhao L, Xu BC, Wang C, Liu CY, et al. Fabrication of a beta-cyclodextrin-based self-assembly containing a redox-responsive ferrocene. Soft Matter. 2020;16:125–31.

    Article  CAS  Google Scholar 

  38. Bertrand A, Stenzel M, Fleury E, Bernard J. Host-guest driven supramolecular assembly of reversible comb-shaped polymers in aqueous solution. Polym Chem. 2012;3:377–83.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support for this work is from the National Natural Science Foundation of China (No. 21978180) and the Science & Technology Department of Sichuan Province (No. 2018HH0038). BS and HL were funded by the Innovation Training Program for college students at Sichuan University (C2020107809). We are grateful for Zhonghui Wang (College of Biomass Science and Engineering, Sichuan University) and her help with the IR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibin Gu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, B., Zhang, L., Yin, H. et al. ROMP of supramolecular norbornene monomers containing β-cyclodextrin–ferrocene (/adamantane) inclusion complexes. Polym J 52, 1333–1347 (2020). https://doi.org/10.1038/s41428-020-00398-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-00398-3

Search

Quick links