Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Precise design of microwrinkles through the independent regulation of elasticity on the surface and in the bulk of soft hydrogels


It is still difficult to precisely control microscopic wrinkles on the surface of functional materials, especially biomimetic soft hydrogels with an elastic modulus lower than 100 kPa. This is due to the difficulty in realizing the systematic and independent regulation of elasticity on the top surface and in the bulk of hydrogels, which is essential for the generation of surface microwrinkles. To overcome this problem, using a two-step photocrosslinking process with VIS and UV irradiation of a photocurable gelatinous sol, we developed a method for independently regulating the elastic modulus on the surface and in the bulk to obtain wrinkles on a biomimetic soft gel. Photocurable gelatin was first irradiated and crosslinked with VIS light in the presence of the water-soluble radical generator sulfonyl camphorquinone, which is effective in forming thick bulk gels. Next, the top surface of these precrosslinked gels was irradiated with UV light in the presence of surface-coated water-insoluble camphorquinone. As a result, this two-step photocrosslinking process enabled to independently control the elastic moduli of the surface and the bulk lower than 100 kPa and to generate several-micron-scale wrinkles on the soft hydrogel surface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme. 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others


  1. Barthlott H, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta. 1997;202:1–8.

    Article  CAS  Google Scholar 

  2. Bhushan B, Jung YC, Koch K. Self-cleaning efficiency of artificial superhydrophobic surfaces. Langmuir. 2009;25:3240–8.

    Article  CAS  Google Scholar 

  3. Liu M, Wang S, Wei Z, Song Y, Jiang L. Bioinspired design of a superoleophobic and low adhesive water/solid interface. Adv Mater. 2009;21:665–9.

    Article  CAS  Google Scholar 

  4. Guinnee E. The Gecko's Foot: Bio-inspiration–Engineering New Materials from Nature. Am Biol Teach. 2007;69:120–2.

    Article  Google Scholar 

  5. Jeong HE, Kwak R, Khademhosseini A, Suh KY. UV-assisted capillary force lithography for engineering biomimetic multiscale hierarchical structures: from lotus leaf to gecko foot hairs. Nanoscale. 2009;1:331–8.

    Article  CAS  Google Scholar 

  6. Gao X, Yan X, Yao X, Xu L, Zhang K, Zhang J, et al. The dry‐style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography. Adv Mater. 2007;19:2213–7.

    Article  CAS  Google Scholar 

  7. Zorba V, Stratakis E, Barberoglou M, Spanakis E, Tzanetakis P, Anastasiadis SH, et al. Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf. Adv Mater. 2008;20:4049–54.

    Article  CAS  Google Scholar 

  8. Jung YC, Bhushan B. Biomimetic structures for fluid drag reduction in laminar and turbulent flows. J Phys. 2009;22:035104.

    Google Scholar 

  9. Chou SY, Krauss PR, Zhang W, Guo L, Zhuang L. Sub-10 nm imprint lithography and applications. J Vac Sci Technol B. 1997;15:2897–904.

    Article  CAS  Google Scholar 

  10. Schmid H, Biebuyck H, Michel B. Light-coupling masks for lensless, sub-wavelength optical lithography. Appl Phys Lett. 1998;72:2379–81.

    Article  CAS  Google Scholar 

  11. Goodberlet JG. Patterning 100 nm features using deep-ultraviolet contact photolithography. Appl Phys Lett. 2000;76:667–9.

    Article  CAS  Google Scholar 

  12. Goodberlet JG, Kavak H. Patterning sub-50 nm features with near-field embedded-amplitude masks. Appl Phys Lett. 2002;81:1315–7.

    Article  CAS  Google Scholar 

  13. Kik PG, Martin AL, Maier SA, Atwater HA. Metal nanoparticle arrays for near-field optical lithography. In: Properties of Metal Nanostructures. Int Soc Optics Photonics. 2002;4810:7–14.

  14. Tanaka T, Sun ST, Hirokawa Y, Katayama S, Kucera J, Hirose Y, et al. Mechanical instability of gels at the phase transition. Nature. 1987;325:796.

    Article  CAS  Google Scholar 

  15. Huang ZY, Hong W, Suo Z. Nonlinear analyses of wrinkles in a film bonded to a compliant substrate. J Mech Phys Solids. 2005;53:2101–18.

    Article  CAS  Google Scholar 

  16. Park JY, Chae HY, Chung CH, Sim SJ, Park J, Lee HH, et al. Controlled wavelength reduction in surface wrinkling of poly (dimethylsiloxane). Soft Matter. 2010;6:677–84.

    Article  CAS  Google Scholar 

  17. Bowden N, Brittain S, Evans AG, Hutchinson JW, Whitesides GM. Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature. 1998;393:146.

    Article  CAS  Google Scholar 

  18. Groenewold J. Wrinkling of plates coupled with soft elastic media. Phys A. 2001;298:32–45.

    Article  Google Scholar 

  19. Yang S, Khare K, Lin PC. Harnessing surface wrinkle patterns in soft matter. Adv Funct Mater. 2010;20:2550–64.

    Article  CAS  Google Scholar 

  20. Ohzono T, Shimomura M. Ordering of microwrinkle patterns by compressive strain. Phys Rev B. 2004;69:132202.

    Article  Google Scholar 

  21. Chung JY, Nolte AJ, Stafford CM. Surface wrinkling: a versatile platform for measuring thin‐film properties. Adv Mater. 2011;23:349–68.

    Article  CAS  Google Scholar 

  22. Genzer J, Groenewold J. Soft matter with hard skin: from skin wrinkles to templating and material characterization. Soft Matter. 2006;2:310–23.

    Article  CAS  Google Scholar 

  23. Guvendiren M, Burdick JA, Yang S. Solvent induced transition from wrinkles to creases in thin film gels with depth-wise crosslinking gradients. Soft Matter. 2010;6.22:5795–801.

    Article  Google Scholar 

  24. Chandra D, Crosby AJ. Self-wrinkling of UV-cured polymer films. Adv Mater. 2011;23:3441–5.

    Article  CAS  Google Scholar 

  25. Guvendiren M, Yang S, Burdick JA. Swelling‐induced surface patterns in hydrogels with gradient crosslinking density. Adv Funct Mater. 2009;19:3038–45.

    Article  CAS  Google Scholar 

  26. Mei Y, Kiravittaya S, Harazim S, Schmidt OG. Principles and applications of micro and nanoscale wrinkles. Mater Sci Eng R Rep. 2010;70:209–24.

    Article  Google Scholar 

  27. Kidoaki S, Matsuda T. Microelastic gradient gelatinous gels to induce cellular mechanotaxis. J Biotechnol. 2008;133:225–30.

    Article  CAS  Google Scholar 

  28. Kawano T, Kidoaki S. Elasticity boundary conditions required for cell mechanotaxis on microelastically-patterned gels. Biomaterials. 2011;32.11:2725–33.

    Article  Google Scholar 

  29. Kawano T, Kidoaki S. Corrigendum to “Elasticity boundary conditions required for cell mechanotaxis on microelastically-patterned gels” [Biomaterials 32 (2011) 2725–33]. Biomaterials. 2013;30:7563–4.

    Article  Google Scholar 

  30. Ueki A, Kidoaki S. Manipulation of cell mechanotaxis by designing curvature of the elasticity boundary on hydrogel matrix. Biomaterials. 2015;41:45–52.

    Article  CAS  Google Scholar 

  31. Hertz H, Über die Berührung fester elastischer Körper, J Reine Angew Mathematik 1881;92:156–71.

  32. Radmacher M, Fritz M, Hansma PK. Imaging soft samples with the atomic force microscope: gelatin in water and propanol. Biophysical J. 1995;69:264–70.

    Article  CAS  Google Scholar 

  33. Cerda E, Mahadevan L. Geometry and physics of wrinkling. Phys Rev Lett. 2003;90:074302.

    Article  CAS  Google Scholar 

  34. Sui J, Chen J, Zhang X, Nie G, Zhang T. Symplectic analysis of wrinkles in elastic layers with graded stiffnesses. J Appl Mech. 2019;86:011008.

    Article  Google Scholar 

  35. Burla F, Tauber J, Dussi S, van der Gucht J, Koenderink GH. Stress management in composite biopolymer networks. Nat Phys. 2019;15:549–53.

    Article  CAS  Google Scholar 

Download references


This work was financially supported by AMED-CREST under Grant Number JP19gm0810002.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Satoru Kidoaki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasaki, S., Kidoaki, S. Precise design of microwrinkles through the independent regulation of elasticity on the surface and in the bulk of soft hydrogels. Polym J 52, 515–522 (2020).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links