A liquid-crystalline semiconducting polymer based on thienylene–vinylene–thienylene: Enhanced hole mobilities by mesomorphic molecular ordering and thermoplastic shape-deformable characteristics


Liquid-crystalline (LC) π-conjugated polymers are an emerging class of semiconducting materials owing to their promising performance in organic field-effect transistors (OFETs). Little is known, however, about the relationship between LC nature and charge carrier mobility. In this paper, we focus on a thiophene-based p-type semiconducting polymer, PC12TV12T, containing thienylene–vinylene–thienylene (TVT) units, and report a systematic investigation of its thermotropic LC properties, self-organized structures in bulk and thin films, as well as charge transport properties in OFETs. We found that thermal annealing at LC temperatures (99–170 °C) strongly enhanced OFET performance, leading to field-effect hole mobilities as high as 0.37 cm2 V−1 s−1, comparable to that of amorphous silicon. By virtue of its thermoplasticity, the TVT-based polymer can also be processed into fine semiconducting microfibers, which can even function as a p-type active channel for charge transport. This bottom-up technology utilizing the LC nature enables cost-effective and energy-efficient manufacture of optoelectronic devices.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Garnier F, Hajlaoui R, Yassar A, Srivastava P. All-polymer field-effect transistor realized by printing techniquies. Science. 1994;265:1684–6.

    CAS  PubMed  Google Scholar 

  2. 2.

    Bao Z, Dodabalapur A, Lovinger AJ. Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility. Appl Phys Lett. 1996;69:4108–10.

    CAS  Google Scholar 

  3. 3.

    Sirringhaus H, Brown PJ, Friend RH, Nielsen MM, Bechgaard K, Langeveld-Voss BMW, et al. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature. 1999;401:685–8.

    CAS  Google Scholar 

  4. 4.

    Sirringhaus H, Kawase T, Friend RH, Shimoda T, Inbasekaran M, Wu W, et al. High-resolution inkjet printing of all-polymer transistor circuits. Science. 2000;290:2123–6.

    CAS  PubMed  Google Scholar 

  5. 5.

    Arias AC, MacKenzie JD, McCulloch I, Rivnay J, Salleo A. Materials and applications for large area electronics: solution-based approaches. Chem Rev. 2010;110:3–24.

    CAS  PubMed  Google Scholar 

  6. 6.

    Facchetti A. π-Conjugated polymers for organic electronics and photovoltaic cell applications. Chem Mater. 2011;23:733–58.

    CAS  Google Scholar 

  7. 7.

    Wang C, Dong H, Hu W, Liu Y, Zhu D. Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem Rev. 2012;112:2208–67.

    CAS  PubMed  Google Scholar 

  8. 8.

    Holliday S, Donaghey JE, McCulloch I. Advances in charge carrier mobilities of semiconducting polymers used in organic transistors. Chem Mater. 2014;26:647–63.

    CAS  Google Scholar 

  9. 9.

    Sirringhaus H. 25th Anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Chem Mater. 2014;26:1319–35.

    CAS  Google Scholar 

  10. 10.

    Luo H, Liu Z, Zhang D. Conjugated D–A terpolymers for organic field-effect transistors and solar cells. Polym J. 2018;50:21–31.

    CAS  Google Scholar 

  11. 11.

    Diao Y, Shaw L, Bao Z, Mannsfeld SCB. Morphology control strategies for solution-processed organic semiconductor thin films. Energy Environ Sci. 2014;7:2145–59.

    CAS  Google Scholar 

  12. 12.

    Khim D, Luzio A, Bonacchini GE, Pace G, Lee MJ, Noh YY, et al. Uniaxial alignment of conjugated polymer films for high-performance organic field-effect transistors. Adv Mater. 2018;30:1–34.

    Google Scholar 

  13. 13.

    Brandão L, Viana J, Bucknall DG, Bernardo G. Solventless processing of conjugated polymers–A review. Synth Met. 2014;197:23–33.

    Google Scholar 

  14. 14.

    Kato T, Uchida J, Ichikawa T, Sakamoto T. Functional liquid crystals towards the next generation of materials. Angew Chem Int Ed. 2018;57:4355–71.

    CAS  Google Scholar 

  15. 15.

    Kato T, Yoshio M, Ichikawa T, Soberats B, Ohno H, Funahashi M. Transport of ions and electrons in nanostructured liquid crystals. Nat Rev Mater. 2017;2:17001.

    Google Scholar 

  16. 16.

    Kato T, Uchida J, Ichikawa T, Soberats B. Functional liquid-crystalline polymers and supramolecular liquid crystals. Polym J. 2018;50:149–66.

    CAS  Google Scholar 

  17. 17.

    Fleischmann E-K, Zentel R. Liquid-crystalline ordering as a concept in materials science: from semiconductors to stimuli-responsive devices. Angew Chem Int Ed. 2013;52:8810–27.

    CAS  Google Scholar 

  18. 18.

    O’Neill M, Kelly SM. Ordered materials for organic electronics and photonics. Adv Mater. 2011;23:566–84.

    PubMed  Google Scholar 

  19. 19.

    Funahashi M. Nanostructured liquid-crystalline semiconductors—a new approach to soft matter electronics. J Mater Chem C. 2014;2:7451–9.

    CAS  Google Scholar 

  20. 20.

    Funahashi M. Development of liquid-crystalline semiconductors with high carrier mobilities and their application to thin-film transistors. Polym J. 2009;41:459–69.

    CAS  Google Scholar 

  21. 21.

    Iino H, Hanna J. Liquid crystalline organic semiconductors for organic transistor applications. Polym J. 2017;49:23–30.

    CAS  Google Scholar 

  22. 22.

    McCullough RD. The chemistry of conducting polythiophenes. Adv Mater. 1998;10:93–116.

    CAS  Google Scholar 

  23. 23.

    Ho V, Boudouris BW, Segalman RA. Tuning polytiophene crystallization through systematic side chain functionalization. Macromolecules. 2010;43:7895–9.

    CAS  Google Scholar 

  24. 24.

    McCulloch I, Heeney M, Bailey C, Genevicius K, MacDonald I, Shkunov M, et al. Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat Mater. 2006;5:328–33.

    CAS  PubMed  Google Scholar 

  25. 25.

    Hamadani BH, Gundlach DJ, McCulloch I, Heeney M. Undoped polythiophene field-effect transistors with mobility of 1 cm2 V−1 s−1. Appl Phys Lett. 2007;91:1–4.

    Google Scholar 

  26. 26.

    Umeda T, Kumaki D, Tokito S. Surface-energy-dependent field-effect mobilities up to 1 cm2 V−1 s−1 for polymer thin-film transistor. J Appl Phys. 2009;105:024516.

    Google Scholar 

  27. 27.

    Ong BS, Wu Y, Liu P, Gardner S. High-performance semiconducting polythiophenes for organic thin-film transistors. J Am Chem Soc. 2004;126:3378–9.

    CAS  PubMed  Google Scholar 

  28. 28.

    Zhao N, Botton GA, Zhu S, Duft A, Ong BS, Wu Y, et al. Microscopic studies on liquid crystal poly(3,3‴-dialkylquaterthiophene) semiconductor. Macromolecules. 2004;37:8307–12.

    CAS  Google Scholar 

  29. 29.

    Wu Y, Liu P, Ong BS, Srikumar T, Zhao N, Botton G, et al. Controlled orientation of liquid-crystalline polythiophene semiconductors for high-performance organic thin-film transistors. Appl Phys Lett. 2005;86:142102.

    Google Scholar 

  30. 30.

    Kim DH, Lee B-L, Moon H, Kang HM, Jeong EJ, Oark J-I, et al. J Am Chem Soc. 2009;131:6124–32.

    CAS  PubMed  Google Scholar 

  31. 31.

    Kim J, Lim B, Baeg KJ, Noh YY, Khim D, Jeong HG, et al. Highly soluble poly(thienylenevinylene) derivatives with charge-carrier mobility exceeding 1 cm2 V−1 s−1. Chem Mater. 2011;23:4663–5.

    CAS  Google Scholar 

  32. 32.

    Lim B, Baeg K-J, Jeong H-G, Jo J, Kim H, Park J-W, et al. A new poly(thienylenevinylene) derivative with high mobility and oxidative stability for organic thin-film transistors and solar cells. Adv Mater. 2009;21:2808–14.

    CAS  Google Scholar 

  33. 33.

    Jang S-Y, Lim B, Yu B-K, Kim J, Baeg K-J, Khim D, et al. Synthesis and characterization of low-band-gap poly(thienylenevinylene) derivatives for polymer solar cells. J Mater Chem. 2011;21:11822–30.

    CAS  Google Scholar 

  34. 34.

    Speros JC, Martinez H, Paulsen BD, White SP, Bonifas AD, Goff PC, et al. Effects of olefin content and alkyl chain placement on optoelectronic and morphological properties in poly(thienylene vinylenes). Macromolecules. 2013;46:5184–94.

    CAS  Google Scholar 

  35. 35.

    Fei Z, Pattanasattayavong P, Han Y, Schroeder BC, Yan F, Kline RJ, et al. Influence of side-chain regiochemistry on the transistor performance of high-mobility, all-donor polymers. J Am Chem Soc. 2014;136:15154–7.

    CAS  PubMed  Google Scholar 

  36. 36.

    Jang SY, Kim I-B, Kim J, Khim D, Jung E, Kang B, et al. New donor–donor type copolymers with rigid and coplanar structures for high-mobility organic field-effect transistors. Chem Mater. 2014;26:6907–10.

    CAS  Google Scholar 

  37. 37.

    Chen H, Guo Y, Yu G, Zhao Y, Zhang J, Gao D, et al. Highly π-extended copolymers with diketopyrrolopyrrole moieties for high-performance field-effect transistors. Adv Mater. 2012;24:4618–22.

    CAS  PubMed  Google Scholar 

  38. 38.

    Kim R, Amegadze PSK, Kang I, Yun H-J, Noh Y-Y, Kwon S-K, et al. High-mobility air-stable naphthalene diimide-based copolymer containing extended π-conjugation for n-channel organic field effect transistors. Adv Funct Mater. 2013;23:5719–27.

    CAS  Google Scholar 

  39. 39.

    Kim J, Baeg K-J, Khim D, James DT, Kim J-S, Lim B, et al. Optimal ambipolar charge transport of thienylenevinylene-based polymer semiconductors by changes in conformation for high-performance organic thin film transistors and inverters. Chem Mater. 2013;25:1572–83.

    CAS  Google Scholar 

  40. 40.

    Chen H, Guo Y, Mao Z, Yu G, Huang J, Zhao Y, et al. Naphthalenediimide-based copolymers incorporating vinyl-linkages for high-performance ambipolar field-effect transistors and complementary-like inverters under air. Chem Mater. 2013;25:4835–4835.

    CAS  Google Scholar 

  41. 41.

    Lim D-H, Jang S-Y, Kang M, Lee S, Kim Y-A, Heo Y-J, et al. A systematic study on molecular planarity and D–A conformation in thiazolothiazole- and thienylenevinylene-based copolymers for organic field-effect transistors. J Mater Chem C. 2017;5:10126–32.

    CAS  Google Scholar 

  42. 42.

    Kang S-H, Lee HR, Dutta GK, Lee J, Oh JH, Yang C. A role of side-chain regiochemistry of thienylene–vinylene–thienylene (TVT) in the transistor performance of isomeric polymers. Macromolecules. 2017;50:884–90.

    CAS  Google Scholar 

  43. 43.

    Sandberg HGO, Frey GL, Shkunov MN, Sirringhaus H, Friend RH, Nielsen MM, et al. Ultrathin regioregular poly(3-hexyl thiophene) field-effect transistors. Langmuir. 2002;18:10176–82.

    CAS  Google Scholar 

  44. 44.

    Wang G, Swensen J, Moses D, Heeger AJ. Increased mobility from regioregular poly(3-hexylthiophene) field-effect transistors. J Appl Phys. 2003;93:6137–41.

    CAS  Google Scholar 

  45. 45.

    Tsao HN, Cho D, Andreasen JW, Rouhanipour A, Breiby DW, Pisula W, et al. The influence of morphology on high-performance polymer field-effect transistors. Adv Mater. 2009;21:209–12.

    CAS  Google Scholar 

  46. 46.

    Wang S, Kiersnowski A, Pisula W, Müllen K. Microstructure evolution and device performance in solution-processed polymeric field-effect transistors: the key role of the first monolayer. J Am Chem Soc. 2012;134:4015–8.

    CAS  PubMed  Google Scholar 

  47. 47.

    Mori T, Oyama T, Komiyama H, Yasuda T. Solution-grown unidirectionally oriented crystalline thin films of a U-shaped thienoacene-based semiconductor for high-performance organic field-effect transistors. J Mater Chem C. 2017;5:5872–6.

    CAS  Google Scholar 

  48. 48.

    Oyama T, Mori T, Hashimoto T, Kamiya M, Ichikawa T, Komiyama H, et al. High-mobility regioisomeric thieno[f,f’]bis[1]benzothiophenes: remarkable effect of syn/anti thiophene configuration on optoelectronic properties, self-organization, and charge-transport functions in organic transistors. Adv Electron Mater. 2018;4:1700390.

    Google Scholar 

Download references


This work was partially supported by KAKENHI (Grant Nos. JP18H02048 (TY), JP18J22297 (TM), and JP16K21218 (HK)) from the Japan Society for the Promotion of Science (JSPS) and the Amano Institute of Technology (TY). TM is grateful for the financial support from the JSPS Research Fellowship. The authors acknowledge the support of the Cooperative Research Program “Network Joint Research Center for Materials and Devices”. The GIXD experiments were performed at the BL40-B2 beamline in SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal No. 2017A1119).

Author information



Corresponding author

Correspondence to Takuma Yasuda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mori, T., Komiyama, H., Ichikawa, T. et al. A liquid-crystalline semiconducting polymer based on thienylene–vinylene–thienylene: Enhanced hole mobilities by mesomorphic molecular ordering and thermoplastic shape-deformable characteristics. Polym J 52, 313–321 (2020). https://doi.org/10.1038/s41428-019-0282-4

Download citation