Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Uniform poly(ethylene glycol): a comparative study

Abstract

Poly(ethylene glycol) (PEG) is a biocompatible, flexible, and hydrophilic polymer that is widely applied in numerous fields. Especially in pharmaceutical research, PEG is used as a bioconjugate agent for PEG-ylated drugs. A well-defined structure is crucial, since dispersity affects biological activity (e.g., toxicity and efficacy). Thus, intensive efforts to develop synthetic protocols approaching uniformity have been made in recent decades. Different approaches utilizing iterative step-by-step synthesis procedures have yielded promising results, and improvement is still ongoing. In this comparative study, we adopted several procedures for the preparation of uniform PEGs in combination with careful characterization, including size exclusion chromatography (SEC) analysis, which has yet to be reported. Oligo(ethylene glycol)s up to the dodecamer were synthesized. The results obtained were compared in terms of yield and purity with those previously reported in the literature. We clearly show the importance of SEC analysis with high separation capacity in the oligomer range for the synthesis of short-chain oligo(ethylene glycol)s.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Scheme 2
Fig. 4
Scheme 3
Fig. 5
Scheme 4
Fig. 6
Scheme 5
Fig. 7
Scheme 6
Fig. 8
Scheme 7
Fig. 9

References

  1. 1.

    J Whelan, C Pan. (Bayer Pharmaceuticals Corporation, USA), PCT Application WO. 2005-US20469, 2005.

  2. 2.

    Brocchini S, Godwin A, Balan S, Choi J-W, Zloh M, Shaunak S. Disulfide bridge based PEGylation of proteins. Adv Drug Deliv Rev. 2008;60:3–12.

    CAS  PubMed  Google Scholar 

  3. 3.

    Haag R, Kratz F. Polymer therapeutics: concepts and applications. Angew Chem Int Ed Engl. 2006;118:1218–37.

    Google Scholar 

  4. 4.

    Zalipsky S. Chemistry of polyethylene glycol conjugates with biologically active molecules. Adv Drug Deliv Rev. 1995;16:157–82.

    CAS  Google Scholar 

  5. 5.

    Greenwald RB, Choe YH, McGuire J, Conover CD. Effective drug delivery by PEGylated drug conjugates. Adv Drug Deliv Rev. 2003;55:217–50.

    CAS  PubMed  Google Scholar 

  6. 6.

    Roberts MJ, Bentley MD, Harris JM. Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev. 2012;64:116–27.

    Google Scholar 

  7. 7.

    Caliceti P, Veronese FM. Pharmacokinetic and biodistribution properties of poly(ethylene glycol)–protein conjugates. Adv Drug Deliv Rev. 2003;55:1261–77.

    CAS  PubMed  Google Scholar 

  8. 8.

    Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov. 2003;2:214–21.

    CAS  PubMed  Google Scholar 

  9. 9.

    Veronese FM, Pasut G. PEGylation, successful approach to drug delivery. Drug Discov Today. 2005;10:1451–8.

    CAS  PubMed  Google Scholar 

  10. 10.

    Fishburn CS. The Pharmacology of PEGylation: Balancing PD with PK to generate novel therapeutics. J Pharm Sci. 2008;97:4167–83.

    CAS  PubMed  Google Scholar 

  11. 11.

    Knop K, Hoogenboom R, Fischer D, Schubert US. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed. 2010;49:6288–308.

    CAS  Google Scholar 

  12. 12.

    Furusho H, Kitano K, Hamaguchi S, Nagasaki Y. Preparation of stable water-dispersible PEGylated gold nanoparticles assisted by nonequilibrium atmospheric-pressure plasma jets. Chem Mater. 2009;21:3526–35.

    CAS  Google Scholar 

  13. 13.

    Ganapatibhotla LVNR, Zheng J, Roy D, Krishnan S. PEGylated imidazolium ionic liquid electrolytes: thermophysical and electrochemical properties. Chem Mater. 2010;22:6347–60.

    CAS  Google Scholar 

  14. 14.

    Shah SAS, Nag M, Kalagara T, Singh S, Manorama SV. Silver on PEG-PU-TiO2 polymer nanocomposite films: An excellent system for antibacterial applications. Chem Mater. 2008;20:2455–60.

    CAS  Google Scholar 

  15. 15.

    Elimelech H, Avnir D. Sodium-Silicate Route to Submicrometer Hybrid PEG@Silica Particles. Chem Mater. 2008;20:2224–7.

    CAS  Google Scholar 

  16. 16.

    Sigma-Aldrich prices 2019. https://www.sigmaaldrich.com. Accessed 08. Oct 2019.

  17. 17.

    Perry SZ, Hibbert H. Studies on reactions relating to carbohydrates and polysaccharides: XLVIII. Ethylene Oxide and related compounds: Synthesis of the Polyethylene Glycols. Can J Res. 1936;14B:77–83.

    CAS  Google Scholar 

  18. 18.

    Keegstra EMD, Zwikker JW, Roest MR, Jenneskens LW. A highly selective synthesis of monodisperse oligo(ethylene glycols). J Org Chem. 1992;57:6678–80.

    CAS  Google Scholar 

  19. 19.

    Harada A, Li J, Kamachi M. Preparation and characterization of a polyrotaxane consisting of monodisperse Poly(ethylene glycol) and α-Cyclodextrins. J Am Chem Soc. 1994;116:3192–6.

    CAS  Google Scholar 

  20. 20.

    Burns CJ, Field LD, Hashimoto K, Petteys BJ, Ridley DD, Sandanayake KRAS. A convenient synthetic route to differentially functionalized long chain polyethylene glycols. Synth Commun. 1999;29:2337–47.

    CAS  Google Scholar 

  21. 21.

    Loiseau FA, Hii KK, Hill AM. Multigram synthesis of well-defined extended bifunctional polyethylene glycol (PEG) Chains. J Org Chem. 2004;69:639–47.

    CAS  PubMed  Google Scholar 

  22. 22.

    Ahmed SA, Tanaka M. Synthesis of oligo(ethylene glycol) toward 44-mer. J Org Chem. 2006;71:9884–6.

    CAS  PubMed  Google Scholar 

  23. 23.

    Niculescu-Duvaz D, Getaz J, Springer CJ. Long functionalized poly(ethylene glycol)s of defined molecular weight: synthesis and application in solid-phase synthesis of conjugates. Bioconj Chem. 2008;19:973–81.

    CAS  Google Scholar 

  24. 24.

    French AC, Thompson AL, Davis BG. High purity discrete PEG oligomer crystals allow structural insight. Angew Chem Int Ed. 2009;48:1248–52.

    CAS  Google Scholar 

  25. 25.

    Székely G, Schaepertoens M, Gaffney RRJ, Livingston AG. Iterative synthesis of monodisperse PEG homostars and linear heterobifunctional PEG. Polym Chem. 2014;5:694–7.

    Google Scholar 

  26. 26.

    Li Y, Guo Q, Li X-F, Zhang H, Yu F-H, Yu W-J, Xia G-Q, Fu M-Y, Yang Z-G, Jiang Z-X. Fluorous synthesis of mono-dispersed poly(ethylene glycols). Tetrahedron Lett. 2014;55:2110–3.

    CAS  Google Scholar 

  27. 27.

    Maranski K, Andreev YG, Bruce PG. Synthesis of Poly(ethylene oxide) approaching monodispersity. Angew Chem Int Ed. 2014;53:6411–3.

    CAS  Google Scholar 

  28. 28.

    Zhang Q, Ren H, Baker GL. A practical and scalable process to selectively monofunctionalized water-soluble α,ω-diols. Tetrahedron Lett. 2014;55:3384–6.

    CAS  Google Scholar 

  29. 29.

    Zhang H, Li X, Shi Q, Li Y, Xia G, Chen L, Yang Z, Jiang Z-X. Highly efficient synthesis of monodisperse Poly(ethylene glycols) and derivatives through macrocyclization of oligo(ethylene glycols). Angew Chem Int Ed. 2015;54:3763–7.

    CAS  Google Scholar 

  30. 30.

    Wawro AM, Muraoka T, Kato M, Kinbara K. Multigram chromatography-free synthesis of octa(ethylene glycol) p-toluenesulfonate. Org Chem Front. 2016;3:1524–34.

    CAS  Google Scholar 

  31. 31.

    Khanal A, Fang S. Solid phase stepwise synthesis of polyethylene glycols. Chem Eur J. 2017;23:15133–42.

    CAS  PubMed  Google Scholar 

  32. 32.

    Fordyce R, Lovell EL, Hibbert H. Studies on reactions relating to carbohydrates and polysaccharides. LVI. The synthesis of the higher polyoxyethylene glycols. J Am Chem Soc. 1939;61:1905–10.

    CAS  Google Scholar 

  33. 33.

    Székely G, Schaepertoens M, Gaffney PRJ, Livingston AG. Beyond PEG2000: Synthesis and functionalisation of monodisperse PEGylated homostars and clickable bivalent polyethyleneglycols. Chem Eur J. 2014;20:10038–51.

    PubMed  Google Scholar 

  34. 34.

    Williamson A. Theory of aetherification. Philos Mag. 1850;37:350–6.

    Google Scholar 

  35. 35.

    Boden N, Bushby RJ, Clarkson S, Evans SD, Knowles PF, Marsh A. The design and synthesis of simple molecular tethers for binding biomembranes to a gold surface. Tetrahedron. 1997;53:10939–52.

    CAS  Google Scholar 

  36. 36.

    Reed NN, Janda KD. A one-step synthesis of monoprotected polyethylene glycol ethers. J Org Chem. 2000;65:5843–5.

    CAS  PubMed  Google Scholar 

  37. 37.

    Zhang J, Zhao Y-J, Su Z-G, Ma G-H. Synthesis of monomethoxy poly(ethylene glycol) without diol poly(ethylene glycol). J Appl Polym Sci. 2007;105:3782–6.

    Google Scholar 

  38. 38.

    Bouzide A, Sauvé G. Silver(I) oxide mediated highly selective monotosylation of symmetrical diols. application to the synthesis of polysubstituted cyclic ethers. Org Lett. 2002;4:2329–32.

    CAS  PubMed  Google Scholar 

  39. 39.

    Coudert G, Mpassi M, Guillaumet G, Selve C. A Novel, Unequivocal synthesis of polyethylene glycols. Synth Commun. 1986;16:19–26.

    CAS  Google Scholar 

  40. 40.

    Wawro AM, Muraoka T, Kinbara K. Chromatography-free synthesis of monodisperse oligo(ethylene glycol) mono-p-toluenesulfonates and quantitative analysis of oligomer purity. Polym Chem. 2016;7:2389–94.

    CAS  Google Scholar 

  41. 41.

    Wan Z, Li Y, Bo S, Gao M, Wang X, Zeng K, Tao X, Li X, Yang Z, Jiang Z-X. Amide bond-containing monodisperse polyethylene glycols beyond 10 000 Da. Org Biomol Chem. 2016;14:7912–9.

    CAS  PubMed  Google Scholar 

  42. 42.

    Xia G, Li Y, Yang Z, Jiang Z-X. Development of a scalable process for α-Amino-ω-methoxyl-dodecaethylene glycol. Org Process Res Dev. 2015;19:1769–73.

    Google Scholar 

  43. 43.

    Li Y, Thapa B, Zhang H, Li X, Yu F, Jeong E-K, Yang Z, Jiang Z-X. Synthesis of gemini surfactants with twelve symmetric fluorine atoms and one singlet 19F MR signal as novel 19F MRI agents. Tetrahedron. 2013;69:9586–90.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the DFG within the framework of the collaborative research centre 1176 (SFB 1176, project C3). The authors would like to acknowledge Peter Gödtel, Maximilian Knab, Rebecca Seim, and Fabienne Urbanek for synthetic support; the analytical team from KIT for analytical support; and Prof. Barner-Kowollik and his group for access to SEC-ESI-MS equipment.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael A. R. Meier.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bohn, P., Meier, M.A.R. Uniform poly(ethylene glycol): a comparative study. Polym J 52, 165–178 (2020). https://doi.org/10.1038/s41428-019-0277-1

Download citation

Further reading

Search

Quick links