Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Synthesis and properties of penta-responsive ABC star quaterpolymers

Abstract

The controlled synthesis of smart multicomponent copolymers can afford new insight into structure-property correlations. Given the lack of CO2 and O2 dual-gas-responsive star polymers, this study is focused on the facile synthesis and properties of multiresponsive ABC star quaterpolymers. The “core-first” strategy was adopted to generate P(ATL-co-NIPAM)-arm-PCL-arm-PDPA stars, followed by tandem amine-thiol-ene conjugation to construct the desired stars bearing O2-/oxidation-responsive and hydrogen bond-switchable Y junctions. Upon composition change, pH switching, gas bubbling and oxidation, the copolymer solution tended to show different cloud points. Furthermore, the sizes and morphologies of copolymer assemblies were strongly dependent on chemical composition and thermal, pH, CO2, O2 and oxidative stimuli, and abundant morphologies such as large compound micelles, hyperbranched micelles, disk-like micelles, spindle-like micelles, ellipsoidal micelles, and multicompartment vesicles could be formed under distinct conditions. Our study affords a promising yet straightforward approach to construct multicomponent miktoarm star polymer, and the composition-/stimuli-dependent thermoresponsive and aggregation behaviors of these polymers pave the way for multipurpose applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Higashihara T, Hayashi M, Hirao A. Synthesis of well-defined star-branched polymers by stepwise iterative methodology using living anionic polymerization. Prog Polym Sci. 2011;36:323–75.

    CAS  Google Scholar 

  2. Moughton AO, Hillmyer MA, Lodge TP. Multicompartment block polymer micelles. Macromolecules. 2012;45:2–19.

    CAS  Google Scholar 

  3. Ren JM, McKenzie TG, Fu Q, Wong EHH, Xu JT, An ZS, et al. Star polymers. Chem Rev. 2016;116:6743–836.

    CAS  PubMed  Google Scholar 

  4. Polymeropoulos G, Zapsas G, Ntetsikas K, Bilalis P, Gnanou Y, Hadjichristidis N. 50th anniversary perspective: polymers with complex architecture. Macromolecules. 2017;50:1253–90.

    CAS  Google Scholar 

  5. Zhao YL. Facile synthesis and topological transformation of multicomponent miktoarm star copolymers. Macromol Rapid Commun. 2019;40:1800571.

    Google Scholar 

  6. Gregory A, Stenzel MH. Complex polymer architectures via RAFT polymerization: from fundamental process to extending the scope using click chemistry and nature’s building blocks. Prog Polym Sci. 2012;37:38–105.

    CAS  Google Scholar 

  7. Wang DL, Jin Y, Zhu XY, Yan DY. Synthesis and applications of stimuli-responsive hyperbranched polymers. Prog Polym Sci. 2017;64:114–53.

    CAS  Google Scholar 

  8. Li ZB, Kesselman E, Talmon Y, Hillmyer MA, Lodge TP. Multicompartment micelles from ABC miktoarm stars in water. Science. 2004;306:98–101.

    CAS  PubMed  Google Scholar 

  9. Xu FG, Wu DD, Huang YJ, Wei H, Gao Y, Feng XL, et al. Multi-dimensional self-assembly of a dual-responsive ABC miktoarm star terpolymer. ACS Macro Lett. 2017;6:426–30.

    CAS  Google Scholar 

  10. Huo M, Du HT, Zeng M, Pan L, Fang T, Xie XM, et al. CO2-stimulated morphology transition of ABC miktoarm star terpolymer assemblies. Polym Chem. 2017;8:2833–40.

    CAS  Google Scholar 

  11. Li SZ, Nie HJ, Gu S, Han ZQ, Han G, Zhang WQ. Synthesis of multicompartment nanoparticles of ABC miktoarm star polymers by seeded RAFT dispersion polymerization. ACS Macro Lett. 2019;8:783–8.

    Google Scholar 

  12. Liu HH, Tang DD, Tang RP, Zhao YL. Synthesis of multifunctional ABC stars with a reduction-labile arm by consecutive ROP, RAFT and ATRP processes. Sci China Chem. 2015;58:1724–33.

    CAS  Google Scholar 

  13. Zhu AJ, Miao K, Deng YB, Ke HT, He H, Yang T, et al. Dually pH/reduction-responsive vesicles for ultrahigh-contrast fluorescence imaging and thermo-chemotherapy-synergized tumor ablation. ACS Nano. 2015;9:7874–85.

    CAS  PubMed  Google Scholar 

  14. An XN, Zhu AJ, Luo HH, Ke HT, Chen HB, Zhao YL. Rational design of multi-stimuli-responsive nanoparticles for precise cancer therapy. ACS Nano. 2016;10:5947–58.

    CAS  PubMed  Google Scholar 

  15. He H, Ji SS, He Y, Zhu AJ, Zou YL, Deng YB, et al. Photoconversion-tunable fluorophore vesicles for wavelength-dependent photo-induced cancer therapy. Adv Mater. 2017;29:1606690.

    Google Scholar 

  16. Pan WD, Liu HH, Zhang HC, Zhao YL. Synthesis and properties of an acid-labile dual-sensitive ABCD star quaterpolymer. Polym Chem. 2016;7:2870–81.

    CAS  Google Scholar 

  17. Liu HH, Zhang J, Dai WX, Zhao YL. Synthesis and self-assembly of a dual-responsive monocleavable ABCD star quaterpolymer. Polym Chem. 2017;8:6865–78.

    CAS  Google Scholar 

  18. Ye CN, Zhao GD, Zhang MJ, Du JZ, Zhao YL. Precise synthesis of ABCDE star quintopolymers by combination of controlled polymerization and azide-alkyne cycloaddition reaction. Macromolecules. 2012;45:7429–39.

    CAS  Google Scholar 

  19. Liu HH, Miao K, Zhao GD, Li CX, Zhao YL. Synthesis of an amphiphilic PEG-PCL-PSt-PLLA-PAA star quintopolymer and its self-assembly for pH-sensitive drug delivery. Polym Chem. 2014;5:3071–80.

    CAS  Google Scholar 

  20. Liu HH, Pan WD, Tong M, Zhao YL. Synthesis and properties of couplable ABCDE star copolymers by orthogonal CuAAC and Diels-Alder click reactions. Polym Chem. 2016;7:1603–11.

    CAS  Google Scholar 

  21. Zhao XQ, Wu WT, Zhang J, Dai WX, Zhao YL. Thermoresponse and self-assembly of an ABC star quaterpolymer with O2 and redox dual-responsive Y junctions. Polym Chem. 2018;9:1095–108.

    CAS  Google Scholar 

  22. Das A, Theato P. Activated ester containing polymers: opportunities and challenges for the design of functional macromolecule. Chem Rev. 2016;116:1434–95.

    CAS  PubMed  Google Scholar 

  23. Espeel P, Du Prez FE. One-pot multi-step reactions based on thiolactone chemistry: A powerful synthetic tool in polymer science. Eur Polym J. 2015;62:247–72.

    CAS  Google Scholar 

  24. Goethals F, Frank D, Du Prez F. Protected thiol strategies in macromolecular design. Prog Polym Sci. 2017;64:76–113.

    CAS  Google Scholar 

  25. Roy D, Cambre JN, Sumerlin BS. Future perspectives and recent advances in stimuli-responsive materials. Prog Polym Sci. 2010;35:278–301.

    CAS  Google Scholar 

  26. Hu JM, Zhang GY, Ge ZS, Liu SY. Stimuli-responsive tertiary amine methacrylate-based block copolymers: synthesis, supramolecular self-assembly and functional applications. Prog Polym Sci. 2014;39:1096–143.

    CAS  Google Scholar 

  27. Casado N, Hernández G, Sardon H, Mecerreyes D. Current trends in redox polymers for energy and medicine. Prog Polym Sci. 2016;52:107–36.

    CAS  Google Scholar 

  28. Zhu YQ, Yang B, Chen S, Du JZ. Polymer vesicles: Mechanism, preparation, application, and respective behavior. Prog Polym Sci. 2017;64:1–22.

    CAS  Google Scholar 

  29. Wei ML, Gao YF, Li X, Serpe MJ. Stimuli-responsive polymers and their applications. Polym Chem. 2017;8:127–43.

    CAS  Google Scholar 

  30. Chen QM, Yu XW, Pei ZQ, Yang Y, Wei Y, Ji Y. Multi-stimuli responsive and multi-functional oligoaniline-modified vitrimers. Chem Sci. 2017;8:724–33.

    CAS  PubMed  Google Scholar 

  31. Darabi A, Jessop PG, Cunningham MF. CO2-responsive polymeric materials: synthesis, self-assembly, and functional applications. Chem Soc Rev. 2016;45:4391–436.

    CAS  PubMed  Google Scholar 

  32. Liu HB, Lin SJ, Feng YJ, Theato P. CO2-responsive polymer materials. Polym Chem. 2017;8:12–23.

    Google Scholar 

  33. Zhang Q, Lei L, Zhu SP. Gas-responsive polymers. ACS Macro Lett. 2017;6:515–22.

    CAS  Google Scholar 

  34. Yan Q, Zhou R, Fu CK, Zhang HJ, Yin YW, Yuan JY. CO2-responsive polymeric vesicles that breath. Angew Chem Int Ed. 2011;50:4923–7.

    CAS  Google Scholar 

  35. Yan Q, Wang JB, Yin YW, Yuan JY. Breathing polymersomes: CO2-tuning membrane permeability for size-selective release, separation, and reaction. Angew Chem, Int Ed. 2013;52:5070–3.

    CAS  Google Scholar 

  36. Yan Q, Zhao Y. Polymeric microtubules that breathe: CO2-driven polymer controlled-self-assembly and shape transformation. Angew Chem Int Ed. 2013;52:9948–51.

    CAS  Google Scholar 

  37. Yan Q, Zhao Y. CO2-stimulated diversiform deformations of polymer assemblies. J Am Chem Soc. 2013;135:16300–3.

    CAS  PubMed  Google Scholar 

  38. Choi JY, Kim JY, Moon HJ, Park MH, Jeong B. CO2- and O2-sensitive fluorophenyl end-capped poly(ethylene glycol). Macromol Rapid Commun. 2014;35:66–70.

    CAS  PubMed  Google Scholar 

  39. Zhang Q, Zhu SP. Oxygen and carbon dioxide dual responsive nanoaggregates of fluoro- and amino-containing copolymer. ACS Macro Lett. 2014;3:743–6.

    CAS  Google Scholar 

  40. Lei L, Zhang Q, Shi SX, Zhu SP. Oxygen and carbon dioxide dual gas-responsive and switchable microgels prepared from emulsion copolymerization of fluoro- and amino-containing monomers. Langmuir. 2015;31:2196–201.

    CAS  PubMed  Google Scholar 

  41. Lei L, Zhang Q, Shi SX, Zhu SP. Oxygen and carbon dioxide dual gas-switchable thermoresponsive homopolymers. ACS Macro Lett. 2016;5:828–32.

    CAS  Google Scholar 

  42. Lei L, Zhang Q, Shi SX, Zhu SP. Oxygen-switchable thermo-responsive random copolymers. Polym Chem. 2016;7:5456–62.

    CAS  Google Scholar 

  43. Lei L, Zhang Q, Shi SX, Zhu SP. Breathable microgel colloidosome: gas-switchable microcapsules with O2 and CO2 tunable shell permeability for hierarchical size-selective control release. Langmuir. 2017;33:6108–15.

    CAS  PubMed  Google Scholar 

  44. Jiang X, Feng C, Lu GL, Huang XY. Oxygen and carbon dioxide dual gas-responsive homopolymers and diblock copolymers synthesized via RAFT polymerization. Polym Chem. 2017;8:1163–76.

    CAS  Google Scholar 

  45. Lin SJ, Shang JJ, Zhang XX, Theato P. “Breathing” CO2-, O2-, and light-responsive vesicles from a triblock copolymer for rate-tunable controlled release. Macromol Rapid Commun. 2018;39:1700313.

    Google Scholar 

  46. Zhang Q, Zhu SP. Oxygen-nitrogen switchable copolymers of 2,2,2-trifluoroethyl methacrylate and N,N-dimethylaminoethyl methacrylate. Macromol Rapid Commun. 2014;35:1692–6.

    CAS  PubMed  Google Scholar 

  47. Zhang HC, Wu WT, Zhao XQ, Zhao YL. Synthesis and thermoresponsive behaviors of thermo-, pH-, CO2-, and oxidation-responsive linear and cyclic graft copolymers. Macromolecules. 2017;50:3411–23.

    CAS  Google Scholar 

  48. Zhang HC, Zhang J, Dai WX, Zhao YL. Facile synthesis of thermo-, pH-, CO2- and oxidation-responsive poly(amido thioether)s withtunable LCST and UCST behaviors. Polym Chem. 2017;8:5749–60.

    CAS  Google Scholar 

  49. Mai YY, Eisenberg A. Self-assembly of block copolymers. Chem Soc Rev. 2012;41:5969–85.

    CAS  PubMed  Google Scholar 

  50. Zhao Y, Sakai F, Su L, Liu YJ, Wei KC, Chen GS, et al. Progressive macromolecular self-assembly: from biomimetic chemistry to bio-inspired materials. Adv Mater. 2013;25:5215–56.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 21971181, 21774085, and 21474070) and the Project Funded by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youliang Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Zhang, J. & Zhao, Y. Synthesis and properties of penta-responsive ABC star quaterpolymers. Polym J 52, 153–163 (2020). https://doi.org/10.1038/s41428-019-0274-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-019-0274-4

Search

Quick links