Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The effect of interfacial dynamics on the bulk mechanical properties of rubber composites

Abstract

The mechanical properties of rubber nanocomposites are believed to relate to the chain dynamics at the filler interface. Here, we tackle this hypothesis by combining traditional rheological measurements with our published results obtained by a modern technique of interfacial sensitive spectroscopy (Macromolecules 51:2180–2186, 2018). The complex shear modulus (G*) for silica (SiO2) nanoparticles filled with uncross-linked styrene-butadiene rubber (SBR) was studied as a function of the strain amplitude and temperature. In the case of the composite with a higher SiO2 fraction, G* remarkably decreased with increasing strain amplitude, known as the Payne effect. This phenomenon has been explained by the breakage of the filler network formed in the composite. Postulating that the G* difference between strain amplitudes of 0.1 and 20% (ΔG*) is a signature of the extent of how the filler network is broken, ΔG* was plotted against temperature. The decrement of ΔG* with increasing temperature changed at ~340 K. This temperature coincided with the temperature at which the chains in direct contact with the filler surface start to structurally relax. This coincidence was also observed for the SiO2-filled uncross-linked polyisoprene composite. Our results make it clear that the aforementioned hypothesis is likely for SiO2-filled uncross-linked rubber composites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cassagnau P. Melt rheology of organoclay and fumed silica nanocomposites. Polymer. 2008;49:2183–96.

    Article  CAS  Google Scholar 

  2. Paul DR, Robeson LM. Polymer nanotechnology: nanocomposites. Polymer. 2008;49:3187–204.

    Article  CAS  Google Scholar 

  3. Zou H, Wu S, Shen J. Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev. 2008;108:3893–957.

    Article  CAS  Google Scholar 

  4. Watanabe R, Hagihara H, Sato H. Structure-property relationships of polypropylene-based nanocomposites obtained by dispersing mesoporous silica into hydroxyl-functionalized polypropylene. Part 2: matrix-filler interactions and pore filling of mesoporous silica characterized by evolved gas analysis. Polym J. 2018;50:1067–77.

    Article  CAS  Google Scholar 

  5. Watanabe R, Hagihara H, Sato H. Structure-property relationships of polypropylene-based nanocomposites obtained by dispersing mesoporous silica into hydroxyl-functionalized polypropylene. Part 1: toughness, stiffness and transparency. Polym J. 2018;50:1057–65.

    Article  CAS  Google Scholar 

  6. Hashimoto T, Amino N, Nishitsuji S, Takenaka M. Hierarchically self-organized filler particles in polymers: cascade evolution of dissipative structures to ordered structures. Polym J. 2019;51:109–30.

    Article  CAS  Google Scholar 

  7. Shinohara Y, Kishimoto H, Masui T, Hattori S, Yamaguchi N, Amemiya Y. Microscopic structural response of nanoparticles in styrene–butadiene rubber under cyclic uniaxial elongation. Polym J. 2019;51:161–71.

    Article  CAS  Google Scholar 

  8. Fukunaga Y, Fujii Y, Inada S, Tsumura Y, Asada M, Naito M, Torikai N. Dispersion state of carbon black in polystyrene produced with different dispersion media and its effects on composite rheological properties. Polym J. 2019;51:275–81.

    Article  CAS  Google Scholar 

  9. Smallwood HM. Limiting law of the reinforcement of rubber. J Appl Phys. 1944;15:758–66.

    Article  CAS  Google Scholar 

  10. Guth E. Theory of filler reinforcement. J Appl Phys. 1945;16:20–5.

    Article  CAS  Google Scholar 

  11. Heinrich G, Kluppel M, Vilgis TA. Reinforcement of elastomers. Curr Opin Solid State Mater Sci. 2002;6:195–203.

    Article  CAS  Google Scholar 

  12. Gusev AA. Micromechanical mechanism of reinforcement and losses in filled rubbers. Macromolecules. 2006;39:5960–2.

    Article  CAS  Google Scholar 

  13. Long D, Sotta P. Stress relaxation of large amplitudes and long timescales in soft thermoplastic and filled elastomers. Rheol Acta. 2007;46:1029–44.

    Article  CAS  Google Scholar 

  14. Long D, Lequeux F. Heterogeneous dynamics at the glass transition in van der Waals liquids, in the bulk and in thin films. Eur Polym J E. 2001;4:371–87.

    CAS  Google Scholar 

  15. Maier PG, Goritz D. Molecular interpretation of the Payne effect. Kautsch Gummi Kunst. 1996;49:18–21.

    CAS  Google Scholar 

  16. Sternstein SS, Zhu AJ. Reinforcement mechanism of nanofilled polymer melts as elucidated by nonlinear viscoelastic behavior. Macromolecules. 2002;35:7262–73.

    Article  CAS  Google Scholar 

  17. Cassagnau P, Mélis F. Non-linear viscoelastic behavior and modulus recovery in silica filled polymers. Polymer. 2003;44:6607–15.

    Article  CAS  Google Scholar 

  18. Zhu AJ, Sternstein SS. Nonlinear viscoelasticity of nanofilled polymers: Interfaces, chain statistics and properties recovery kinetics. Compos Sci Technol. 2003;63:1113–26.

    Article  CAS  Google Scholar 

  19. Sternstein SS, Ramorino G, Jiang B, Zhu AJ. Reinforcement and nonlinear viscoelasticity of polymer melts containing mixtures of nanofillers. Rubber Chem Technol. 2005;78:258–70.

    Article  CAS  Google Scholar 

  20. Chen Q, Gong SS, Moll J, Zhao D, Kumar SK, Colby RH. Mechanical reinforcement of polymer nanocomposites from percolation of a nanoparticle network. ACS Macro Lett. 2015;4:398–402.

    Article  CAS  Google Scholar 

  21. Fukao K, Miyamoto Y. Glass transitions and dynamics in thin polymer films: Dielectric relaxation of thin films of polystyrene. Phys Rev E. 2000;61:1743–54.

    Article  CAS  Google Scholar 

  22. Ellison CJ, Torkelson JM. The distribution of glass-transition temperatures in nanoscopically confined glass formers. Nat Mater. 2003;2:695–700.

    Article  CAS  Google Scholar 

  23. Miyazaki T, Nishida K, Kanaya T. Thermal expansion behavior of ultrathin polymer films supported on silicon substrate. Phys Rev E. 2004;69:061803.

    Article  Google Scholar 

  24. Priestley RD, Ellison CJ, Broadbelt LJ, Torkelson JM. Structural relaxation of polymer glasses at surfaces, interfaces and in between. Science. 2005;309:456–9.

    Article  CAS  Google Scholar 

  25. Roth CB, McNerny KL, Jager WF, Torkelson JM. Eliminating the enhanced mobility at the free surface of polystyrene: fluorescence studies of the glass transition temperature in thin bilayer films of immiscible polymers. Macromolecules. 2007;40:2568–74.

    Article  CAS  Google Scholar 

  26. Tanaka K, Tateishi Y, Okada Y, Nagamura T, Doi M, Morita H. Interfacial mobility of polymers on inorganic solids. J Phys Chem B. 2009;113:4571–7.

    Article  CAS  Google Scholar 

  27. Tsuruta H, Fujii Y, Kai N, Kataoka H, Ishizone T, Doi M, Morita H, Tanaka K. Local conformation and relaxation of polystyrene at substrate interface. Macromolecules. 2012;45:4643–9.

    Article  CAS  Google Scholar 

  28. Inutsuka M, Horinouchi A, Tanaka K. Aggregation states of polymers at hydrophobic and hydrophilic solid interfaces. ACS Macro Lett. 2015;4:1174–8.

    Article  CAS  Google Scholar 

  29. Kawaguchi D, Tateishi Y, Tanaka K. Time-resolved fluorescence analysis for dye-labeled polystyrene in thin films. J Non-Cryst Solids. 2015;407:284–7.

    Article  CAS  Google Scholar 

  30. Shimomura S, Inutsuka M, Yamada NL, Tanaka K. Unswollen layer of cross-linked polyisoprene at the solid interface. Polymer. 2016;105:526–31.

    Article  CAS  Google Scholar 

  31. Nguyen HK, Inutsuka M, Kawaguchi D, Tanaka K. Depth-resolved local conformation and thermal relaxation of polystyrene near substrate interface. J Chem Phys. 2017;146:203313.

    Article  Google Scholar 

  32. Zuo B, Inutsuka M, Kawaguch D, Wang XP, Tanaka K. Conformational relaxation of poly(styrene-co-butadiene) chains at substrate interface in spin-coated and solvent-cast films. Macromolecules. 2018;51:2180–6.

    Article  CAS  Google Scholar 

  33. Sugimoto S, Inutsuka M, Kawaguchi D, Tanaka K. Reorientation kinetics of local conformation of polyisoprene at substrate interface. ACS Macro Lett. 2018;7:85–9.

    Article  CAS  Google Scholar 

  34. Nguyen HK, Konomi A, Sugimoto S, Inutsuka M, Kawaguchi D, Tanaka K. Rotational dynamics of a probe in rubbery polymers characterized by time-resolved fluorescence anisotropy measurement. Macromol Chem Phys. 2018;219:1700329.

    Article  Google Scholar 

  35. Yamamoto K, Kawaguchi D, Sasahara K, Inutsuka M, Yamamoto S, Uchida K, Mita K, Ogawa H, Takenaka M, Tanaka K. Aggregation states of poly(4-methylpentene-1) at a solid interface. Polym J. 2019;51:247–55.

    Article  CAS  Google Scholar 

  36. Pliskin I, Tokita N. Bound rubber in elastomers—analysis of elastomer-filler interaction and its effect on viscosity and modulus of composite systems. J Appl Polym Sci. 1972;16:473–92.

    Article  CAS  Google Scholar 

  37. Dannenberg EM. Bound rubber and carbon black reinforcement. Rubber Chem Technol. 1986;59:512–24.

    Article  CAS  Google Scholar 

  38. Takayanagi M, Harima H, Iwata Y. Viscoelastic behavior of polymer blends and its comparison with model experiments. J Soc Mater Sci Jpn. 1963;12:389–94.

    Article  Google Scholar 

  39. Takayanagi M, Uemura S, Minami S. Application of equivalent model method to dynamic rheo-optical properties of crystalline polymer. J Polym Sci Part C. 1964;5:113–22.

    Article  Google Scholar 

  40. Payne AR. A note on the conductivity and modulus of carbon black-loaded rubbers. J Appl Polym Sci. 1965;9:1073–82.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by JSPS KAKENHI for Scientific Research (A) (No. JP15H02183) (KT) and JSPS KAKENHI for Scientific Research (B) (No. JP17H03118) (DK) from the Ministry of Education, Culture, Sports, Science and Technology, Japan. We are also grateful for support from the JST-Mirai Program (JPMJMI18A2) (KT). We also thank Drs Katsuhiko Tsunoda, Takashi Shimizu and Takaaki Igarashi (Bridgestone Corp.) for giving us samples and their fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiji Tanaka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugimoto, S., Inutsuka, M., Kawaguchi, D. et al. The effect of interfacial dynamics on the bulk mechanical properties of rubber composites. Polym J 52, 217–223 (2020). https://doi.org/10.1038/s41428-019-0254-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-019-0254-8

This article is cited by

Search

Quick links