Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Note
  • Published:

Detection of influenza virus by agglutination using nanoparticles conjugated with a sialic acid-mimic peptide

Abstract

Influenza virus (IFV) detection in the early phase of disease is critical for effective anti-influenza therapy using neuraminidase inhibitors. Sialyloligosaccharide receptors on the surface of respiratory cells are recognized by IFV hemagglutinin (HA) in the infection. Here, we show that agglutination of IFV is detected using poly(glycidyl methacrylate) (PGMA)-coated polystyrene nanoparticles conjugated with a sialic acid-mimic peptide. The azido peptide was immobilized onto the surface of the PGMA-coated nanoparticles by click chemistry. The distribution of particle size, determined by dynamic light scattering, indicated that the peptide-conjugated nanoparticles were agglutinated in the presence of HA and IFV. Nanoparticles conjugated with the receptor-mimic peptide may be a useful alternative to red blood cells in the global surveillance and clinical diagnosis of influenza.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Paules C, Subbarao K. Influenza. Lancet. 2017;390:697–708.

    Article  Google Scholar 

  2. Gamblin SJ, Skehel JJ. Influenza hemagglutinin and neuraminidase membrane glycoproteins. J Biol Chem. 2010;285:28403–9.

    Article  CAS  Google Scholar 

  3. Webster RG, Govorkova EA. Continuing challenges in influenza. Ann N Y Acad Sci. 2014;1323:115–39.

    Article  CAS  Google Scholar 

  4. Salomon R, Webster RG. The influenza virus enigma. Cell. 2009;136:402–10.

    Article  CAS  Google Scholar 

  5. Truelove S, Zhu H, Lessler J, Riley S, Read JM, Wang S, et al. A comparison of hemagglutination inhibition and neutralization assays for characterizing immunity to seasonal influenza A. Influenza Other Respir Virus. 2016;10:518–24.

    Article  CAS  Google Scholar 

  6. Pedersen JC. Hemagglutination-inhibition assay for influenza virus subtype identification and the detection and quantitation of serum antibodies to influenza virus. Methods Mol Biol. 2014;1161:11–25.

    Article  Google Scholar 

  7. Suzuki Y. Sialobiology of influenza: molecular mechanism of host range variation of influenza viruses. Biol Pharm Bull. 2005;28:399–408.

    Article  CAS  Google Scholar 

  8. Nobusawa E, Ishihara H, Morishita T, Sato K, Nakajima K. Change in receptor-binding specificity of recent human influenza A viruses (H3N2): a single amino acid change in hemagglutinin altered its recognition of sialyloligosaccharides. Virology. 2000;278:587–96.

    Article  CAS  Google Scholar 

  9. Matsubara T, Onishi A, Saito T, Shimada A, Inoue H, Taki T, et al. Sialic acid-mimic peptides as hemagglutinin inhibitors for anti-influenza therapy. J Med Chem. 2010;53:4441–9.

    Article  CAS  Google Scholar 

  10. Hatano K, Matsubara T, Muramatsu Y, Ezure M, Koyama T, Matsuoka K, et al. Synthesis and influenza virus inhibitory activities of carbosilane dendrimers peripherally functionalized with hemagglutinin-binding Peptide. J Med Chem. 2014;57:8332–9.

    Article  CAS  Google Scholar 

  11. Matsubara T, Ujie M, Yamamoto T, Akahori M, Einaga Y, Sato T. Highly sensitive detection of influenza virus by boron-doped diamond electrode terminated with sialic acid-mimic peptide. Proc Natl Acad Sci USA. 2016;113:8981–4.

    Article  CAS  Google Scholar 

  12. Matsubara T, Onishi A, Saito T, Yamaguchi D, Sato T. Multivalent Effect in Influenza Hemagglutinin-Binding Activity of Sugar-Mimic Peptide. KOBUNSHI RONBUNSHU. 2016;73:62–8.

    Article  CAS  Google Scholar 

  13. Chao HG, Bernatowicz MS, Matsueda GR. Preparation and use of the 4-[1-[N-(9-fluorenylmethyloxycarbonyl)amino]-2-(trimethylsilyl)ethyl]phenoxyacetic acid linkage agent for solid-phase synthesis of C-terminal peptide amides: improved yields of tryptophan-containing peptides. J Org Chem. 1993;58:2640–4.

    Article  CAS  Google Scholar 

  14. Asahi Y, Yoshikawa T, Watanabe I, Iwasaki T, Hasegawa H, Sato Y, et al. Protection against influenza virus infection in polymeric Ig receptor knockout mice immunized intranasally with adjuvant-combined vaccines. J Immunol. 2002;168:2930–8.

    Article  CAS  Google Scholar 

  15. Matsubara T, Sumi M, Kubota H, Taki T, Okahata Y, Sato T. Inhibition of influenza virus infections by sialylgalactose-binding peptides selected from a phage library. J Med Chem. 2009;52:4247–56.

    Article  CAS  Google Scholar 

  16. Sakamoto S, Hatakeyama M, Ito T, Handa H. Tools and methodologies capable of isolating and identifying a target molecule for a bioactive compound. Bioorg Med Chem. 2012;20:1990–2001.

    Article  CAS  Google Scholar 

  17. Matlin KS, Reggio H, Helenius A, Simons K. Infectious entry pathway of influenza virus in a canine kidney cell line. J Cell Biol. 1981;91(3 Pt 1):601–13.

    Article  CAS  Google Scholar 

  18. Sakai-Tagawa Y, Ozawa M, Yamada S, Uchida Y, Saito T, Takahashi K, et al. Detection sensitivity of influenza rapid diagnostic tests. Microbiol Immunol. 2014;58:600–6.

    Article  CAS  Google Scholar 

  19. Jannetto PJ, Buchan BW, Vaughan KA, Ledford JS, Anderson DK, Henley DC, et al. Real-time detection of influenza a, influenza B, and respiratory syncytial virus a and B in respiratory specimens by use of nanoparticle probes. J Clin Microbiol. 2010;48:3997–4002.

    Article  Google Scholar 

  20. Wei J, Zheng L, Lv X, Bi Y, Chen W, Zhang W, et al. Analysis of influenza virus receptor specificity using glycan-functionalized gold nanoparticles. ACS Nano. 2014;8:4600–7.

    Article  CAS  Google Scholar 

  21. Bray BL. Large-scale manufacture of peptide therapeutics by chemical synthesis. Nat Rev Drug Disco. 2003;2:587–93.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by AMED under Grant Number JP19hm0102056.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshinori Sato.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsubara, T., Kubo, A. & Sato, T. Detection of influenza virus by agglutination using nanoparticles conjugated with a sialic acid-mimic peptide. Polym J 52, 261–266 (2020). https://doi.org/10.1038/s41428-019-0252-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-019-0252-x

Search

Quick links