Abstract
In a very short time, direct (hetero)arylation polymerization (DHAP) has established itself as a valuable and atom-economical alternative to traditional cross-coupling methods such as the Migita–Stille and Suzuki-Miyaura polymerizations for the synthesis of low cost and efficient conjugated polymers for organic electronics. Because of sustained research efforts combining in-depth theoretical calculations, the development of new ligands and the careful fine-tuning of polymerization conditions, selectivity and reactivity issues should be soon a thing of the past. This focus review highlights the recent advances that lead to defect-free polymeric semiconductors and conductors and the current limitations and challenges of DHAP as it moves toward simultaneously becoming an industrially feasible, environmentally friendly, and synthetically powerful polymerization technique.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Boudreault P-LT, Najari A, Leclerc M. Processable low bandgap polymers for photovoltaic applications. Chem Mater. 2011;23:456–69.
Zhang G, Zhao J, Chow PCY, Jiang K, Zhang J, Zhu Z, et al. Nonfullerene acceptor molecules for bulk heterojunction organic solar cells. Chem Rev. 2018;118:3447–507.
Wang G, Melkonyan FS, Facchetti A, Marks TJ. All-polymer solar cells: recent progress, challenges, and prospects. Angew Chem Int Ed. 2019;58:4129–42.
Yuan J, Zhang Y, Zhou L, Zhang G, Yip H-L, Lau T-K, et al. Single junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule. 2019;3:1140–51.
Dubey N, Leclerc M. Conducting polymers: efficient thermoelectric materials. J Polym Sci Part B. 2011;49:467–75.
Petsagkourakis I, Tybrandt K, Crispin X, Ohkubo I, Satoh N, Mori T. Thermoelectric materials and applications for energy harvesting power generation. Sc Technol Adv Mater. 2018;19:836–62.
Friend RH, Gymer RW, Holmes AB, Burroughes JH, Marks RN, Taliani C, et al. Electroluminescence in conjugated polymers. Nature. 1999;397:121–8.
Beaupré S, Boudreault P-LT, Leclerc M. Solar energy production and energy efficient lighting: photovoltaic devices and white light-emitting diodes using poly(2,7-fluorene), poly(2,7-carbazole) and poly(2,7-dibenzosilole) derivatives. Adv Mater. 2010;22:E6–27.
Kraft A, Grimsdale AC, Holmes AB. Electroluminescent conjugated polymers–seeing polymers in a new light. Angew Chem Int Ed. 1998;37:402–28.
Bao Z, Dodabalapur A, Lovinger AJ. Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility. Appl Phys Lett. 1996;69:4108–10.
Facchetti A. Semiconductors for organic transistors. Mater Today. 2007;10:28–37.
Sirringhaus H. 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv Mater. 2014;26:1319–35.
Facchetti A. π-Conjugated polymers for organic electronics and photovoltaic cell application. Chem Mater. 2011;23:733–58.
Ho HA, Najari A, Leclerc M. Optical detection of DNA and proteins with cationic polythiophenes. Acc Chem Res. 2008;41:168–78.
Moon J-M, Thapliyal N, Hussain KK, Goyal RN, Shim Y-B. Conducting polymer-based electrochemical biosensors for neurotransmitters: a review. Biosens Bioel. 2018;102:540–52.
Thomas SW, Joly GD, Swager TM. Chemical sensors based on amplifying fluorescent conjugated polymers. Chem Rev. 2007;107:1339–86.
Beaupré S, Dumas J, Leclerc M. Toward the development of new textile/plastic electrochromic cells using triphenylamine-based copolymers. Chem Mater. 2006;18:4011–8.
Beaupré S, Breton A-C, Dumas J, Leclerc M. Multicolored electrochromic cells based on Poly(2,7-carbazole) derivatives for adaptative camouflage. Chem Mater. 2009;21:1504–13.
Savagian LR, Österholm AM, Shen DE, Christiansen DT, Kuepfert M, Reynolds JR. Conjugated polymer blends for high contrast black-to-transmissive electrochromism. Adv Opt Mater. 2018;6:1800594.
Dyer AL, Thompson EJ, Reynolds JR. Completing the color palette with spray-processable polymer electrochromics. ACS Appl Mater Interfaces. 2011;3:1787–95.
Suzuki A. Cross-coupling reactions of organoboranes: an easy way to construct C–C bonds. Angew Chem Int Ed. 2011;50:6723–37.
Milstein D, Stille JK. A general, selective, and facile method for ketone synthesis from acid chlorides and organotin compounds catalyzed by palladium. J Am Chem Soc. 1978;100:3636–8.
Tamao K, Sumitami K, Kumada M. Selective carbon-carbon bond formation by cross-coupling of Grignard reagents with organic halides. Catalysis by nickel-phosphine complexes. J Am Chem Soc. 1972;94:4374–6.
Negishi E. Magical power of transition metals: past, present, and future. Angew Chem Int Ed. 2011;50:6738–64.
Heck RF, Nolley JP. Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides. J Org Chem. 1972;37:2320–2.
Chauvin Y. Olefin metathesis: the early days. Angew Chem Int Ed. 2006;45:3741–7.
Schrock RR. Multiple metal-carbon bonds for catalytic metathesis reactions. Angew Chem Int Ed. 2006;45:3748–59.
Grubbs RH. Olefin-metathesis catalysts for the preparation of molecules and materials. Angew Chem Int Ed. 2006;45:3760–5.
Ziegler K, Holzkamp E, Breil H, Martin H. The Mulheim normal pressure polyethylene process. Angew Chem. 1955;67:541–7.
Natta G, Pino P, Corradini P, Danusso F, Mantica E, Mazzanti G, et al. Crystalline high polymers of α-olefins. J Am Chem Soc. 1955;77:1708–10.
Morin P-O, Bura T, Leclerc M. Realizing the full potential of conjugated polymers: innovation in polymer synthesis. Mater Horiz. 2016;3:11–20.
Alberico D, Scott ME, Lautens M. Aryl-aryl bond formation by transition-metal-catalyzed direct arylation. Chem Rev. 2007;107:174–238.
Lyons TW, Sanford MS. Palladium-catalyzed ligand-directed C-H functionalization reactions. Chem Rev. 2010;110:1147–69.
Ackermann L. Carboxylate-assisted transition-metal-catalyzed C-H bond functionalizations: mechanism and scope. Chem Rev. 2011;111:1315–45.
Schipper DJ, Fagnou K. Direct arylation as a synthetic tool for the synthesis of thiophene-based organic electronic materials. Chem Mater. 2011;23:1594–1600.
Wencel-Delord J, Glorius F. C-H bond activation enables the rapid construction and late-stage diversification of functional molecules. Nat Chem. 2013;5:369–75.
Berrouard P, Najari A, Pron A, Gendron D, Morin P-O, Pouliot J-R, et al. Synthesis of a 5-alkyl[3,4-c]thienopyrrole-4,6-dione-based copolymer via direct heteroarylation. Angew Chem Int Ed. 2012;51:2068–71.
Wang Q, Takita R, Kikuzaki Y, Ozawa F. Palladium-catalyzed dehydrohalogenative polycondensation of 2-bromo-3-hexylthiophene: an efficient approach to head-to-tail poly(3-hexylthiophene). J Am Chem Soc. 2010;132:11420–1.
Lu W, Kuwabara J, Kanbara T. Polycondensation of dibromofluorene analogues with tetrafluorobenzene via direct arylation. Macromolecules. 2011;44:1252–5.
Pouliot J-R, Grenier F, Blaskovits T, Beaupré S, Leclerc M. Direct (Hetero)arylation polymerization: simplicity for conjugated polymers synthesis. Chem Rev. 2016;116:14225–74.
Facchetti A, Vaccaro L, Marrocchi A. Semiconducting polymers prepared by direct arylation polycondensation. Angew Chem Int Ed. 2012;51:3520–3.
Cordovilla C, Bartolome C, Martinez-Ilarduya JM, Espinet P. The Stille reaction, 38 years later. ACS Catal. 2015;5:3040–53.
Kiriy A, Senkovskyy V, Sommer M. Kumada catalyst-transfer polycondensation: mechanism, opportunities, and challenges. Macromol Rapid Commun. 2011;32:1503–17.
Huo S, Mroz R, Carroll J. Negishi coupling in the synthesis of advanced electronic, optical, electrochemical, and magnetic materials. Org Chem Front. 2015;2:416–45.
Sakamoto J, Rehahn M, Wegner G, Schlüter AD. Suzuki Polycondensation: Polyarylenes à la Carte. Macromol Rapid Comun. 2009;30:653–87.
Pirotte G, Verstappen P, Vanderzande D, Maes W. On the “True” structure of push–pull-type low-bandgap polymers for organic electronics. Adv Electron Mater. 2018;4:1700481.
Fujinami Y, Kuwabara J, Lu W, Hayashi H, Kanbara T. Synthesis of thiophene- and bithiophene-based alternating copolymers via Pd-catalyzed direct C-H arylation. ACS Macro Lett. 2012;1:67–70.
Rehahn M, Schluter AD, Wegner G, Feast WJ. Soluble poly(para-phenylene)s. 2. Improved synthesis of poly(para-2,5-di-n-hexylphenylene) via Pd-catalysed coupling of 4-bromo-2,5-di-n-hexylbenzeneboronic acid. Polymer. 1989;30:1060–2.
Ranger M, Rondeau D, Leclerc M. New well-defined poly(2,7-fluorene) derivatives: photoluminescence and base doping. Macromolecules. 1997;30:7686–91.
Morin J-F, Leclerc M, Adès D, Siove A. Polycarbazoles: 25 years of progress. Macromol Rapid Commun. 2005;26:761–78.
Stalder R, Mei J, Graham KR, Estrada LA, Reynolds JR. Isoindigo, a versatile electron-deficient unit for high-performance organic electronics. Chem Mater. 2014;26:664–78.
Morin P-O, Bura T, Sun B, Gorelsky SI, Li Y, Leclerc M. Conjugated Polymers à la Carte from Time-Controlled Direct (Hetero) Arylation Polymerization. ACS Macro Lett. 2015;4:21–4.
Grenier F, Aïch RB, Lai Y-Y, Guérette M, Holmes A, Tao Y, et al. Electroactive and photoactive poly[Isoindigo-alt-EDOT] synthesized using direct (hetero)arylation polymerization in batch and in continuous flow. Chem Mater. 2015;27:2137–43.
Guérette M, Najari A, Maltais J, Pouliot J-R, Dufresne S, Simoneau M, et al. New processable phenanthridinone-based polymers for organic solar cell applications. Adv Energy Mater. 2016;6:1502094.
Matsidik R, Giorgio M, Luzio A, Caironi M, Komber H, Sommer M. A defect-free naphthalene diimide bithiazole copolymer via regioselective direct arylation polycondensation. Eur J Org Chem 2018;2018:6121–6.
Robitaille A, Jenekhe SA, Leclerc M. Poly(naphthalene diimide-alt-bithiophene) prepared by direct (hetero)arylation polymerization for efficient all-polymer solar cells. Chem Mater. 2018;30:5353–61.
Yuan J, Zhang Y, Zhou L, Zhang C, Lau T-K, Zhang G, et al. Fused benzothiadiazole: a building block for n-type organic acceptor to achieve high performance organic solar cells. Adv Mater. 2019;31:1807577.
Bura T, Blaskovits JT, Leclerc M. Direct (hetero)arylation polymerization: trends and perspectives. J Am Chem Soc. 2016;138:10056–71.
Rudenko AE, Wiley CA, Tannaci JF, Thompson BC. Optimization of direct arylation polymerization conditions for the synthesis of poly(3-hexylthiophene). J Polym Sci Part A. 2013;51:2660–8.
Okamoto K, Zhang J, Housekeeper JB, Marder SR, Luscombe CK. C−H arylation reaction: atom efficient and greener syntheses of π-conjugated small molecules and macromolecules for organic electronic materials. Macromolecules. 2013;46:8059–78.
Wang QF, Wakioka M, Ozawa F. Synthesis of end-capped regioregular poly(3-hexylthiophene)s via direct arylation. Macromol Rapid Commun. 2012;33:1203–7.
Pouliot J-R, Wakioka M, Ozawa F, Li Y, Leclerc M. Structural analysis of poly(3-hexylthiophene) prepared via direct heteroarylation polymerization. Macromol Chem Phys. 2016;217:1493–1500.
Suraru S-L, Lee JA, Luscombe CK. Preparation of an aurylated alkythiophene monomer via C-H activation for use in Pd-PEPPSI-iPR catalysed-controlled chain growth polymerization. ACS Macro Lett. 2016;5:533–6.
Lee JA, Luscombe CK. Dual-catalytic Ag-Pd system for direct arylation polymerization to synthesize poly(3-hexylthiophene). ACS Macro Lett. 2018;7:767–71.
Jeffries-El M, Sauvé G, McCullough RD. Facile synthesis of end-functionalized regioregular poly(3-alkylthiophene)s via modified grignard metathesis reaction. Macromolecules. 2005;38:10346–52.
Bura T, Morin P-O, Leclerc M. En route to defect-free polythiophene derivatives by direct heteroarylation polymerization. Macromolecules. 2015;48:5614–20.
Dudnik AS, Aldrich TJ, Eastham ND, Chang RPH, Facchetti A, Marks TJ. Tin-free direct C−H arylation polymerization for high photovoltaic efficiency conjugated copolymers. J Am Chem Soc. 2016;138:15699–709.
Carsten B, He F, Son HJ, Xu T, Yu L. Stille polycondensation for synthesis of functional materials. Chem Rev. 2011;111:1493–528.
Marzano G, Kotowski D, Badubri F, Musio R, Pellegrino A, Luzzati S, et al. Tin-free synthesis of a ternary random copolymer for BHJ solar cells: direct (hetero)arylation versus stille polymerization. Macromolecules. 2015;48:7039–48.
Hendsbee AD, Li Y. Performance comparisons of polymer semiconductors synthesized by direct (hetero)arylation polymerization (DHAP) and conventional methods for organic thin film transistors and organic photovoltaics. Molecules. 2018;23:1255.
Brouwer F, Developing Suitable Polymer Semiconductors for the Application in BioFETs. Zernike Institute PhD thesis series 2011–21, ISBN 978-90-367-5130-8.
Neo WT, Ye Q, Shi Z, Chua S-J, Xu J. Influence of catalytic systems in Stille polymerization on the electrochromic performance of diketopyrrolopyrrole-based conjugated polymers. Mater Chem Front. 2018;2:331–7.
Hong W, Chen S, Sun B, Arnould MA, Meng Y, Li Y. Is a polymer semiconductor having a “Perfect” regular structure desirable for organic thin film transistors? Chem Sci. 2015;6:3225–35.
Marzano G, Carulli F, Babudri F, Pellegrino A, Po R, Luzzati S, et al. PBDTTPD for plastic solar cells via Pd(PPh3)4-catalyzed direct (hetero)arylation polymerization. J Mater Chem A. 2016;4:17163–70.
Hendriks KH, Gaël HL, van Pruissen GWP, Wienk MM, Janssen RAJ. Homocoupling defects in diketopyrrolopyrrole-based copolymers and their effect on photovoltaic performance. J Am Chem Soc. 2014;136:11128–33.
Pouliot J-R, Sun B, Leduc M, Najari A, Li Y, Leclerc M. A high mobility DPP-based polymer obtained via direct(hetero)arylation polymerization. Polym Chem. 2015;6:278–82.
Guo C, Quinn J, Sun B, Li Y. Dramatically different charge transport properties of bisthienyl diketopyrrolopyrrole-bithiazole copolymers synthesized via two direct (hetero)arylation polymerization routes. Polym Chem. 2016;7:4515–24.
Bura T, Beaupré S, Légaré M-A, Quinn J, Rochette E, Blaskovits JT, et al. Direct heteroarylation polymerization: guidelines for defect-free conjugated polymers. Chem Sci. 2017;8:3913–25.
Gobalasingham NS, Thompson BC. Direct arylation polymerization: a guide to optimal conditions for effective conjugated polymers. Prog Polym Sci. 2018;83:135–201.
Aldrich TJ, Dudnik AS, Eastham ND, Manley EF, Chen LX, Chang RPH, et al. Suppressing defect formation pathways in the direct C–H arylation polymerization of photovoltaic copolymers. Macromolecules. 2018;51:9140–55.
Wakioka M, Ozawa F. Highly efficient catalysts for direct arylation polymerization (DArP). Asian J Org Chem. 2018;7:1206–16.
Iizuka E, Wakioka M, Ozawa F. Mixed-ligand approach to palladium-catalyzed direct arylation polymerization: effective prevention of structural defects using diamines. Macromolecules. 2016;49:3310–7.
Blaskovits JT, Johnson PA, Leclerc M. Mechanistic origin of β-defect formation in thiophene-based polymers prepared by direct (hetero)arylation. Macromolecules. 2018;51:8100–13.
Ni Z, Wang H, Dong H, Dang Y, Zhao Q, Zhang X, et al. Mesopolymer synthesis by ligand-modulated direct arylation polycondensation towards n-type and ambipolar conjugated systems. Nat Chem. 2019;11:271–7.
Wang X, Wang M. Synthesis of donor–acceptor conjugated polymers based on benzo[1,2-b:4,5-b]dithiophene and 2,1,3-benzothiadiazole via direct arylation polycondensation: towards efficient C–H activation in nonpolar solvents. Polym Chem. 2014;5:5784–92.
Kuwabara J, Yamazaki K, Yamagata T, Tsuchida W, Kanbara T. The effect of a solvent on direct arylation polycondensation of substituted thiophenes. Polym Chem. 2015;6:891–5.
Matsidik R, Komber H, Sommer M. Rational use of aromatic solvents for direct arylation polycondensation: C−H reactivity versus solvent quality. ACS Macro Lett. 2015;4:1346–50.
Bura T, Beaupré S, Ibraikulov OA, Légaré M-A, Quinn J, Lévêque P, et al. New fluorinated dithienyldiketopyrrolopyrrole monomers and polymers for organic electronics. Macromolecules. 2017;50:7080–90.
Roy C, Bura T, Beaupré S, Légaré M-A, Sun J-P, Hill IG, et al. Fluorinated thiophene-based synthons: polymerization of 1,4- dialkoxybenzene and fluorinated dithieno-2,1,3-benzothiadiazole by direct heteroarylation. Macromolecules. 2017;50:4658–67.
Gobalasingham NS, Pankow RM, Thompson BC. Synthesis of random poly(hexyl thiophene-3- carboxylate) copolymers via oxidative direct arylation polymerization (oxi-DArP). Polym Chem. 2017;8:1963–71.
Guo Q, Wu D, You J. Oxidative direct arylation polymerization using oxygen as the sole oxidant: facile, green access to bithiazole-based polymers. ChemSusChem. 2016;9:2765–8.
Aoki H, Saito H, Shimoyama Y, Kuwabara J, Yasuda T, Kanbara T. Synthesis of conjugated polymers containing octafluorobiphenylene unit via Pd-catalyzed cross-dehydrogenative-coupling reaction. ACS Macro Lett. 2018;7:90–4.
Josse P, Dayneko S, Zhang Y, Dabos-Seignon S, Zhang S, Blanchard P, et al. Direct (hetero)arylation polymerization of a spirobifluorene and a dithienyl-diketopyrrolopyrrole derivative: new donor polymers for organic solar cells. Molecules. 2018;23:962.
Acknowledgements
The authors are grateful to NSERC for their continuous support over the years.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Leclerc, M., Brassard, S. & Beaupré, S. Direct (hetero)arylation polymerization: toward defect-free conjugated polymers. Polym J 52, 13–20 (2020). https://doi.org/10.1038/s41428-019-0245-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41428-019-0245-9