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Abstract
Star-shaped cyclopolymers were first synthesized on the basis of living cationic cyclopolymerization of divinyl ethers
bearing a variety of bulky substituents, including cyclohexene, norbornene, norbornane, cyclic acetal, and adamantane
groups. All the obtained cyclopolymers exhibited a high degree of cyclization, as high as ~97%, judging from the contents of
residual pendant vinyl ether double bonds in the polymers. The glass transition temperatures (Tgs) of both the linear and star-
shaped cyclopolymers were in the range of 145−229 °C depending on the pendant substituents. Methacrylate-terminated
end-functionalized star-shaped cyclopolymers were synthesized by the functionalized initiator-based living cationic
cyclopolymerization of divinyl ethers. The subsequent cross-linked core formation occurred via the reaction of the growing
tail termini, whereas the methacrylate head terminals remained intact. The obtained end-functionalized star-shaped
cyclopolymers were subjected to a thermal cross-linking reaction to yield star-shaped cyclopolymer networks with film-
forming ability.

Introduction

Vinyl ethers with various substituents are manufactured in
industry [1], and their cationic polymerization has supplied
a variety of polymers [2–5]. Polymers derived from vinyl
ethers with linear alkyl substituents have low glass transi-
tion temperatures (Tgs) that are well below room tempera-
ture [6]. Therefore, the applications of poly(vinyl ether)s for
rubber materials or elastomers have been intensively studied
before [7–10].

In contrast, we have synthesized a new series of poly(vinyl
ether)s with high Tgs well above room temperature by intro-
ducing aliphatic polycyclic substituents [11–19]. An example
is the polymer of vinyl ether with a tricyclodecane unit

(8-vinyloxytricyclodecane [5.2.1.02,6] ; TCDVE). Poly
(TCDVE) showed a high Tg of ~100 °C as well as a high
thermal decomposition temperature (Td) of ~350 °C, and was
a candidate for a new transparent optical plastic with a rela-
tively high-refractive index and high hydrophobicity [13, 17].

In the chain polymerization of vinyl monomers, cyclo-
polymerization of bifunctional vinyl monomers is capable
of introducing cyclic structures into polymer-repeating units
[20–22]. Bifunctional vinyl ethers (divinyl ether) generally
polymerize to form cross-linked insoluble polymers
[23–25]. Cyclopolymerization of divinyl ethers, on the
other hand, yields a linear polymer, called a cyclopolymer,
which consists of cyclized repeating units derived from
intramolecular cyclization during the propagation reaction
[26–31]. The rigid, consecutively cyclized main chains led
to high-thermal stability and high glass transition tempera-
tures of the resulting polymers [32–37]. However, to obtain
a cyclized polymer with a high cyclization ratio in the
cyclopolymerization, it is necessary to lower the initial
concentration of the monomer to suppress the inter-
molecular propagation reaction [38], and accordingly, it is
difficult to obtain high-molecular-weight cyclopolymers
with a high degree of cyclization.

In contrast, the linking reaction of a living polymer with a
divinyl compound is used to synthesize a high-molecular-
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weight, core-cross-linked, star-shaped polymer via microgel
formation, which can conveniently synthesize a star-shaped
polymer with a large number of arms [39, 40]. Furthermore,
since a wide variety of arm chain polymers are available, and
the size and type of the core can be changed, various prop-
erties and functions can be imparted [41–46]. In some cases,
the star polymers have a higher glass transition temperature
than the corresponding linear polymer [36, 37, 47] and
excellent mechanical properties [43, 44, 48, 49]. It is also
possible to obtain star-shaped polymers with a large number
of end-functional groups [50, 51].

This study aims to synthesize a variety of high-
molecular-weight cyclopoly(divinyl ether)s via living
cyclopolymerization followed by star-polymer formation.
Scheme 1 shows the divinyl ether monomers and the syn-
thetic route employed. Divinyl ethers 1–3 and 5 possess
pendant aliphatic cyclic substituents with different degrees
of bulkiness, and divinyl ether 4 has a polar cyclic sub-
stituent. Living cyclopolymerization of divinyl ether
monomers 1−5 and the subsequent reaction of the living
polymers yielded core-cross-linked star-shaped cyclopoly-
mers [Star-Poly(1−5)]. The obtained star-shaped polymers
had high-molecular-weights and high Tgs. Because star-
shaped polymers have many end groups per molecule, we
studied the synthesis of star-shaped cyclopolymers with a
polymerizable functional group introduced at the starting
end and then the synthesis of novel network polymers
consisting of rigid cyclized polymer chains to prepare
cyclopolymer membranes (Scheme 2).

Experimental procedures

Materials

4,4-Bis(vinyloxymethyl)cyclohexene (1), 2-methyl-5,5-bis
(vinyloxymethyl)-1,3-dioxane (4), and 1,4-cyclohexane
dimethanol divinyl ether (6) (Nippon Carbide Industries)
were distilled under reduced pressure over calcium hydride
before use. 5,5-Bis(vinyloxymethyl)-2-bicyclo[2,2,1]hep-
tane (2), 2,2-bis(vinyloxymethyl)bicyclo[2,2,1]heptane (3),
and 2,2-bis(vinyloxymethyl)tricycle[3,3,1,13,7]decane (5)
(Nippon Carbide Industries) were used without further
purification. Toluene was purified by drying over calcium
chloride overnight followed by double distillation in the
presence of calcium hydride. 1-(Isobutoxy)ethyl acetate
(IBEA) was synthesized by the reaction of isobutyl vinyl
ether with acetic acid at 60 °C and purified by distillation
under reduced pressure [52]. Tetralin was purified by
sequentially washing with sulfuric acid, water, a 10 wt%
aqueous sodium hydroxide solution and water; drying over
calcium chloride; and doubly distilling under reduced
pressure in the presence of calcium hydride. Et1.5AlCl1.5
(Tosoh Finechem; 2.0 M solution in toluene) was used
without further purification. Ethyl acetate (CH3COOEt) was
dried over calcium chloride overnight and then distilled
twice over calcium hydride. 2-[1-Acethoxyethoxy]ethyl
methacrylate (AEEM) was synthesized by the addition
reaction between 2-(vinyloxy)ethyl methacrylate, which
was prepared by the reaction of 2-chloroethyl vinyl ether
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(Maruzen Petrochemical) with sodium methacrylate
(Aldrich) [53], and acetic acid and then purified by dis-
tillation under reduced pressure [54].

Synthesis of cyclopolymers and star-shaped
cyclopolymers

The polymerizations were performed under a nitrogen atmo-
sphere in a glass tube equipped with a three-way stopcock,
which was dried by a heat gun (400 °C). To initiate the
reaction, prechilled solutions of IBEA (0.5 mL in toluene) and
Et1.5AlCl1.5 (0.5 mL in toluene) were successively added to a
monomer solution (4.0mL in toluene) containing tetralin as
an internal standard for gas chromatography. To synthesize
star-shaped polymers [40], a solution of 6 as a cross-linker
(1.0 mL in toluene) was added to the almost polymerized
reaction mixture to cause chain linking among the preformed
polymer chains. To terminate the reaction, methanol con-
taining a small amount of aqueous ammonia (2.0 mL) was
added to the reaction solution. Monomer conversion was
determined from its residual concentration measured by gas
chromatography using tetralin as an internal standard. To
recover the products, the reaction mixture was diluted with
methylene chloride, washed sequentially with 0.1mol/L
hydrochloric acid and 10 wt% aqueous sodium chloride to

remove initiator residues, evaporated to dryness under
reduced pressure and vacuum dried. The polymers were fur-
ther purified by preparative gel permeation chromatography
(GPC) to remove the unreacted monomer and tetralin com-
pletely for NMR analysis. Alternatively, the polymers were
purified by reprecipitation in methanol for Poly(1)−Poly(5),
in N,N-dimethylacetamide for Star-Poly(1), in ethyl acetate
for Star-Poly(2), in triethylamine for Star-Poly(3), in acet-
onitrile for Star-Poly(4), and in a mixture of ethyl acetate and
toluene (2/1 v/v) for Star-Poly(5) from tetrahydrofuran for
thermal analysis.

Characterization

GPC measurements of the molecular weight distributions
(MWDs) of the polymers were conducted in chloroform (at
a 1.0 mL/min flow rate) at 40 °C on a Shimadzu LC-10AD
liquid chromatograph equipped with three polystyrene gel
columns (Shodex K-807, K-805 and K-804) and a Shi-
madzu RID-6A refractive index detector. The number-
average molecular weight (Mn) and polydispersity ratio
[weight-average molecular weight/number-average mole-
cular weight (Mw/Mn)] were obtained by chromatograms
with polystyrene calibration of the standard samples whose
molecular weights were 775000, 355000, 168000, 50000,
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17700, and 2800. The operation of preparative GPC was
performed with chloroform as an eluent (flow rate: 3.0 mL/
min) at room temperature on a Jasco Tri Totar-II liquid
chromatograph with a polystyrene gel column (Jasco
Megapak 201) and a Shodex RI SE-31 refractive index
detector. To obtain the absolute molecular weight of the
polymers, gel permeation chromatography with low-angle
light scattering detection in conjunction with refractive
index detection (LALS-GPC) was conducted in THF (at a
1.0 mL/min flow rate) at 40 °C on a Shimadzu LC-10AD
chromatograph equipped with a Shodex KF-806M poly-
styrene gel column, an Asahi Techneion Viscotek Model
270 light scattering detector and a GL Sciences RI Model
504 refractive index detector with OmniSEC software
(Asahi Techneion, Osaka, Japan). The 1H (500MHz) NMR
measurement was conducted by using a Jeol ECX-500
instrument at room temperature with tetramethylsilane as
an internal standard. Differential scanning calorimetry
(DSC) was performed with Rigaku Thermo Plus DSC
8230 L with 5 °C/min heating and cooling rates, during
which the sample was purged by nitrogen gas. The Tg was
defined as the temperature at the midpoint of the change in
heat capacity on the second heating scan. FT-IR spectra
were recorded on a Nicolet iS5 instrument (Thermo Fisher
Scientific Inc.).

Results and discussion

Living cationic cyclopolymerization of 1−3

Living cationic cyclopolymerization of 1−3 was performed
in toluene at 0 °C with the IBEA/Et1.5AlCl1.5/CH3COOEt
initiating system [55, 56]. A relatively low initial monomer
concentration ([Monomer]0= 0.15M) was applied to
accelerate the intramolecular propagation leading to

cyclized repeating units. Figure 1 shows the time-
conversion plots (A), the Mn (B) and Mw/Mn (C) of the
product polymers versus monomer conversion plots for the
polymerization of 1−3. Polymerizations of all three
monomers proceeded quantitatively and almost completely
in ~60−90 min during the first stage of the polymerization.
The Mns of the obtained polymers increased with increasing
monomer conversion. The addition of fresh monomer to the
almost completely polymerized reaction mixture led to a
further increase in the Mns of the obtained polymers. These
results indicate that the polymerizations of 1−3 proceeded
in a living manner using the IBEA/Et1.5AlCl1.5/CH3COOEt
initiating system. The Mw/Mn values of the obtained poly-
mers were somewhat broad, especially in the later stages of
the polymerizations. The broadening of the MWDs of
polymers in the later stage of polymerization of monomer 1
−3 is due to the post reaction of the pendant unreacted vinyl
groups of the formed polymers [26–28].

Figure 2 shows the 1H NMR spectrum of poly(1) obtained
in the early stage of the polymerization (conversion= 15%).
In addition to the signals of the poly(vinyl ether) backbone
and the cyclohexene pendants, a small signal of the unreacted
vinyl ether methine proton (b’ at 6.5 ppm) was observed. By
comparing the intensity of the vinyl ether methine protons
(b’) with all the absorptions (δ 2.9−4.1) arising from the main
chain methine groups (b, d) and the pendant methylene
groups (e, f), the content of residual vinyl groups (the vinyl
content) in the polymer was obtained to be 1.4 mol%.
Therefore, the degree of cyclization for poly(1) was over 98%
[34–37]. Figures S1 S2 show the 1H NMR spectra of poly(2)
and poly(3), respectively. Similar to the results for poly(1), the
contents of unreacted vinyl groups in the polymers were
measured to be 1.1mol% for poly(2) and 1.8 mol% for poly
(3). Therefore, the degrees of cyclization for poly(2) and poly
(3) were over 98%, a high value that was virtually the same as
that of poly(1).

Fig. 1 Cationic
cyclopolymerization of 1−3
with IBEA/Et1.5AlCl1.5/
CH3COOEt in toluene at 0 °C:
[Monomer]0= 0.15M;
[IBEA]0= 5.0 mM;
[Et1.5AlCl1.5]0= 60 mM;
[CH3COOEt]0= 1.0M. a Time-
conversion curve; b Mn versus
conversion plots; c Mw/Mn

versus conversion plots
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Living cationic cyclopolymerization of 4

Living cationic cyclopolymerization of 4 with a highly polar
cyclic acetal moiety was performed in toluene at 0 °C using
the IBEA/Et1.5AlCl1.5/CH3COOEt initiating system, similar to
that of divinyl ether 1−3. Figure 3 shows the time-conversion
plots (A), the Mn (B), and Mw/Mn (C) of the product polymers
versus monomer conversion plots and the MWD curves of the
polymers (D) for the polymerization of 4. The polymerization
of 4 reached ~100% conversion in 10 h, and it was found that
the polymerization rate was considerably lower than those of 1
−3. This is probably because the highly polar acetal rings act
as an added base, and weaken the activity of the growing end
[56, 57]. The Mn of the polymer increased in direct proportion
to monomer conversion and further increased upon addition of
fresh monomer to the almost completely polymerized reaction
mixture, indicating that the cyclopolymerization of 4 using
IBEA/Et1.5AlCl1.5/CH3COOEt initiating system involved the
long-lived propagating species. However, theMw/Mn values of
the obtained polymer of 4 increased at the high monomer
conversion and showed a higher value than those for 1−3. In
addition, large shoulders were observed in the MWD curves
of the polymers at high monomer conversions.

Figure 4 shows the 1H NMR spectrum of poly(4) in the
early stage of the polymerization (conversion= 16%). The
absorptions of the poly(vinyl ether) backbone and the cyclic
acetal pendants and a small signal attributed to the unreacted
vinyl ether methine proton (b’ at 6.5 ppm) were observed. By
comparing the intensity of the vinyl ether methine protons
(b’) with all the absorptions (δ 2.5–5.0) arising from the main
chain methine groups (b, d) and the pendant methylene

groups (e, f, g, j) and the acetal methine (h), the vinyl content
of the polymer was determined to be 2.9 mol%. Therefore, the
degree of cyclization for the poly(4) was estimated to be 97%.
The content of unreacted vinyl groups was greater, and hence,
more branching and cross-linking occurred; the MWDs of the
cyclized polymers of divinyl ether 4 were broader than those
of the cyclized polymers of divinyl ethers 1−3.

Living cationic cyclopolymerization of 5

Living cationic cyclopolymerization of 5, which has a
bulky, symmetrical and strain-free tricyclic (adamantane)
moiety [58], was investigated in toluene at 0 °C using the
IBEA/Et1.5AlCl1.5/CH3COOEt initiating system, similar to
the polymerization of divinyl ethers 1−4. Figure 5 shows
the time-conversion plots (A), theMn (B), andMw/Mn (C) of
the product polymers versus monomer conversion plots and
the MWD curves of the polymers (D) for the polymeriza-
tion of 5. The reaction proceeded to 100% conversion
within 30 min, the rate of which was much higher than
those of the polymerizations of 1−4. This is probably
because the added bases make it somewhat difficult to
stabilize active cation species due to steric hindrance of the
highly bulky adamantane group [12]. Nevertheless, the Mn

of the polymer increased in direct proportion to monomer
conversion and further increased upon addition of a fresh
monomer feed to the almost completely polymerized reac-
tion mixture, indicating that living cyclopolymerization of 5
using the IBEA/Et1.5AlCl1.5/CH3COOEt initiating system
occurred. The MWDs of the polymers of 5 were narrower
than those of the other cyclopolymers, even at high
monomer conversions.

Figure 6 shows the 1H NMR spectrum of the poly(5)
obtained in the early stage of polymerization (conversion=
35%). With the resonance of the poly(vinyl ether) back-
bone and the adamantane pendants, a very small signal of
the unreacted vinyl ether methine proton (b’ at 6.5 ppm)
was detected. By comparing the intensity of the vinyl
ether methine protons (b’) with all the peaks (δ 2.9−4.7)
arising from the main chain methine groups (b, d) and the
pendant methylene groups (e, f), the vinyl content of
the polymer was found to be 0.5 mol%. This means that
the degree of cyclization of poly(5) was over 99%, which
is the highest value among the cyclopolymers of divinyl
ethers 1−5.

The rather high cyclopolymerization tendency of divinyl
ethers 1−5 is primarily due to the Thorpe−Ingold effect
[34, 35, 59]. In addition, the highest cyclopolymerization
tendency of divinyl ether 5 is probably a result of the steric
hindrance of very bulky adamantane substituent of the
monomer to suppress the intermolecular propagation.
Therefore, the broadening of polymer MWDs was not
observed at high conversions because the degree of

Fig. 2 1H NMR spectrum (in toluene-d8) of the product obtained by
the polymerization of 1 with IBEA/Et1.5AlCl1.5/CH3COOEt in toluene
at 0 °C: monomer conversion= 15%; vinyl content= 1.4 mol%
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cyclization was very high and the content of unreacted vinyl
groups was quite small; thus, branching and cross-linking
structures did not substantively occur.

Synthesis of star-shaped cyclopolymers

High-molecular-weight star-shaped cyclopolymers were
synthesized by the reaction of the formed living cyclopo-
lymers with a small amount of divinyl ether 6 as a cross-
linking agent. Figure 7 shows the MWDs of the product

polymers, in which a molar ratio of 6 to living polymer or
r= [6]0/[P*]0= 10 was employed. Divinyl ethers 1−5 were
polymerized with the IBEA/Et1.5AlCl1.5/CH3COOEt system
in toluene at 0 °C, and then the resulting living cyclopoly-
mers were reacted and linked with divinyl ether cross-linker
6. Soluble products were obtained, and the Mns of product
polymers reached 75,000−90,000, indicating the generation
of core-cross-linked star-shaped cyclopolymers [36, 37].
The yield of star-shaped polymers was calculated by com-
paring the area of the MWD curve of the produced star-
shaped polymer with that of the unreacted starting linear
polymer. The yields of the star-shaped polymers of divinyl
ethers 1−4 were 74−85%. In particular, the yield of the
star-shaped polymer of divinyl ether 5 was 93%, which is
higher than that of the other star-shaped polymers. Fur-
thermore, purification of each synthesized star-shaped
cyclopolymer was carried out by reprecipitation (Fig. S3).
After reprecipitation, the peak derived from the unreacted
polymer in the MWD curves disappeared, and therefore, it
was found that only the star-shaped polymers could be
recovered. TheMns of the star polymers should be estimated
to be lower than absolute values because of the low
hydrodynamic volume of the star-shaped polymers. There-
fore, the number of arms of the star-shaped polymers was
determined from the absolute molecular weight of the star-
shaped cyclopolymers and their arm chain polymers mea-
sured by LALS-GPC (Table S1). Based on these values, the
number of arm chains of a star-shaped cyclopolymer
[number of arm chains=Mn of star-shaped polymer
(LALS-GPC)/{Mn of arm chain polymer (LALS-GPC)+
196.29 (the molecular weight of divinyl ether 6) × r
(= 10)}] was found to be 26−45.

Fig. 3 Cationic
cyclopolymerization of 4 with
IBEA/Et1.5AlCl1.5/CH3COOEt
in toluene at 0 °C: [4]0=
0.15M; [IBEA]0= 5.0 mM;
[Et1.5AlCl1.5]0= 60 mM;
[CH3COOEt]0= 1.0M. a Time-
conversion curve; b Mn versus
conversion plots; c Mw/Mn

versus conversion plots; d GPC
traces of the polymerization
products

Fig. 4 1H NMR spectrum (in toluene-d8) of the product obtained by
the polymerization of 4 with IBEA/Et1.5AlCl1.5/CH3COOEt in toluene
at 0 °C: monomer conversion= 26%; vinyl content= 2.9 mol%
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Thermal properties of cyclopolymers and star-
shaped cyclopolymers

Table 1 shows the thermal properties of the obtained
polymers. Poly(1) with monocyclic cyclohexene had a Tg

of 115−122 °C. Poly(2) with polycyclic norbornene and
Poly(3) with polycyclic norbornane exhibited a Tg of
150−170 °C. The reason why Poly(2) and Poly(3) show
higher Tgs than Poly(1) is that the molecular motion of the
polymer chains was further suppressed for Poly(2) and Poly

(3) by bulkier substituents [16, 60]. Poly(4) with a highly
polar cyclic acetal moiety exhibited a Tg of 161−168 °C.
Although both Poly(1) and Poly(4) have the same six-
membered ring in the side chain, Poly(4) had a higher Tg
than Poly(1). The higher Tg of Poly(4) is likely due to the
interaction between polymer chains through the polar acetal
ring [61]. Poly(5) with bulky, symmetrica,l and strain-free
tricyclic adamantine exhibited a Tg of 204−220 °C, much
higher than those of the other cyclopolymers. The reason
why Poly(5) shows a higher Tg than Poly(2) and Poly(3),
which have similar polycyclic substituents, is that the ada-
mantane unit is more rigid and bulkier than the norbornene
and norbornane units, and hence, the molecular motion of
the chains was further suppressed [14, 35, 62, 63]. Fur-
thermore, the Tgs of star-shaped cyclopolymers were even
higher than those of the corresponding linear cyclopoly-
mers. The difference in Tgs could simply be because of the
difference in their molecular weights. In addition, the pre-
sence of the stiff microgel core and crowded rigid arm
chains connected to the core would elevate the Tgs of the
star-shaped cyclopolymers [36, 37, 47].

Synthesis of end-functionalized cyclopolymers

Living cationic cyclopolymerizations of 2 and 5 were
investigated in toluene at 0 °C with the 2-(1-acetoxyethoxy)
ethyl methacrylate (AEEM)/Et1.5AlCl1.5/CH3COOEt initi-
ating system. Figure 8 shows the time-conversion plots (A),
the Mn (B), and Mw/Mn (C) of the product polymers versus
monomer-conversion plots and the MWD curves of the
polymers (D) for the polymerization of 2 and 5. The Mn

increased in direct proportion to monomer conversion and

Fig. 5 Cationic
cyclopolymerization of 5 with
IBEA/Et1.5AlCl1.5/CH3COOEt
in toluene at 0 °C: [5]0=
0.15M; [IBEA]0= 5.0 mM;
[Et1.5AlCl1.5]0= 60 mM;
[CH3COOEt]0= 1.0M. a Time-
conversion curve; b Mn versus
conversion plots; c Mw/Mn

versus conversion plots; d GPC
traces of the polymerization
products

Fig. 6 1H NMR spectrum (in toluene-d8) of the product obtained by
the polymerization of 5 with IBEA/Et1.5AlCl1.5/CH3COOEt in toluene
at 0 °C: monomer conversion= 35%; vinyl content= 0.5 mol%
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further increased in the second stage, indicating that poly-
merization of 2 and 5 proceeded in living manner with the
AEEM/Et1.5AlCl1.5/CH3COOEt initiating system.

Figure 9 and Fig. S4 show the 1H NMR spectra of end-
functionalized cyclopolymers 2 and 5 [End-Poly(2), End-
Poly(5)] obtained in the early stage of polymerization
(conversion= 14 and 41%, respectively). For End-Poly(2),
a small signal of the unreacted vinyl ether methine proton
(b’ at 6.5 ppm) was observed. By comparing the intensity of
the resonance of the vinyl ether methine protons (b’) with
all the peaks (δ 2.4–4.3) due to the main chain methine
groups (b, d), the pendant methylene groups (e, f), and the
pendant methine groups (h, k), the vinyl content of the
polymers was found to be 1.4 mol%. As is the case with
Poly(5), the vinyl content of the End-Poly(5) was 0.4 mol%.
In other words, the degree of cyclization for the End-Poly
(2) was over 98%, and for the End-Poly(5) was over 99%.
Furthermore, a small signal of the methacrylate unit at the
starting end was also observed in the 1H NMR spectrum of
each polymer. The Mns of each polymer determined by
NMR based on this peak were almost consistent with the
calculated values. This indicates that one methacrylate
moiety at the starting end of each polymer is present per
polymer chain.
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products in the synthesis of
star polymers using monomer
divinyl ether 1−5 and
divinyl ether 6 as a cross-
linker with IBEA/Et1.5AlCl1.5/
CH3COOEt in toluene at 0 °C:
[Monomer]0= 0.15M;
[IBEA]0= 5.0 mM;
[Et1.5AlCl1.5]0= 60 mM;
[CH3COOEt]0= 1.0M; r= [6]0/
[P*]0= 10

Table 1 Thermal properties of the cyclopolymers and star-shaped
cyclopolymersa

Entry Polymer Mn
b Mw/Mn

b Tg
c

1 Poly(1) 6210 1.41 115

2 Poly(1) 13,400 1.88 122

3 Star-Poly(1) 83,000 1.29 145

4 Poly(2) 5450 1.35 151

5 Poly(2) 12,000 1.82 161

6 Star-Poly(2) 79,200 1.46 183

7 Poly(3) 6060 1.34 150

8 Poly(3) 12,700 1.96 170

9 Star-Poly(3) 93,200 1.35 184

10 Poly(4) 10,800 1.32 161

11 Poly(4) 18,,400 1.65 168

12 Star-Poly(4) 79,300 1.63 186

13 Poly(5) 5000 1.35 204

14 Poly(5) 12,200 1.40 220

15 Star-Poly(5) 1,09,000 1.51 229

aPolymerizations were carried out with IBEA/Et1.5AlCl1.5/CH3COOEt
in toluene at 0 °C
bMeasured by GPC with polystyrene calibration
cMeasured by DSC on a second heating scan
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Synthesis of end-functionalized star-shaped
cyclopolymers and thermal properties

End-functionalized star-shaped cyclopolymers were syn-
thesized by the reaction of the formed living cyclopolymer
with divinyl ether 6 as a cross-linking agent. Figure 10
shows the MWDs of the product polymers, where a molar
feed ratio of 6 to living polymer, r= [6]0/[P*]0= 10, was
employed. Soluble end-functionalized star-shaped cyclo-
polymers with high-molecular-weights compared with those

of the starting cyclopolymer were obtained. The yields of
the star polymers were 77 and 85%, calculated by com-
parison of the area of the MWD curve of the produced star
polymers with those of the unreacted starting linear
polymers.

The end-functionalized star-shaped cyclopolymers were
purified by reprecipitation in ethyl acetate from THF for
End-Star-Poly(2) in a mixture of ethyl acetate and toluene
(2/1:v/v) from THF for End-Star-Poly(5). After reprecipi-
tation, the peak derived from homopolymers almost dis-
appeared, and therefore, the star-shaped polymers could be
purified. Figure S5 shows DSC thermograms of star-shaped
polymers after purification. At the 1st heating, an exother-
mic peak was observed ~140−160 °C. This exothermic
peak may be derived from the reaction of methacrylate at
the end of the star-shaped polymers [64, 65]. During the
2nd heating process, no exothermic peaks were observed
because the methacrylate double bonds that can undergo
thermal reaction were consumed in the 1st heating scan.

Synthesis of networked-star-shaped cyclopolymers:
preparation of membrane of end-functionalized
star-shaped cyclopolymers

The preparation of membranes of synthesized end-
functionalized star-shaped cyclopolymers was investi-
gated. The synthesized polymers were dissolved in toluene,
poured into a Teflon dish, air dried at room temperature for
6 days, and then heated in a vacuum oven at 140 °C for 30
minutes to give membranes. Figure 11 shows the IR spectra
of End-Star-Poly(2) and End-Star-Poly(5) before and after
cross-linking. The absorptions at 1640 cm−1 assigned to the
stretching of C=C double bonds and at 1100 cm−1

assigned to the stretching of C−O−C were detected in the
spectrum before cross-linking. With the thermal cross-
linking reaction, the peak intensity of the double bonds was
apparently decreased. The extent of the reaction of C= C
double bonds was calculated from their peak strength at
1640 cm−1 compared with the peak strength at 1100 cm−1

due to the C−O−C absorption. The extents of the reactions
of C=C double bonds for End-Star-Poly(2) and End-Star-
Poly(5) were 23 and 15%, respectively. Figure 12 shows
photographs of membranes after thermal cross-linking. The
membranes before thermal cross-linking were brittle, and
could not be grasped with tweezers, but after cross-linking,
their strength increased, and they could be grasped with
tweezers. These results indicate that networked polymers
composed of rigid cyclized star-shaped polymer chains
were obtained.

We synthesized and molded many vinyl ether polymers
in our previous studies so far [17, 18]. However, due to the
fragility of the rigid polymer structure, most of them should

Fig. 8 Cationic cyclopolymerization of 2 and 5 with AEEM/
Et1.5AlCl1.5/ CH3COOEt in toluene at 0 °C: [Monomer]0= 0.15M;
[AEEM]0= 5.0 mM; [Et1.5AlCl1.5]0= 60 mM; [CH3COOEt]0= 1.0M.
(a Time-conversion curve; b Mn versus conversion plots; c Mw/Mn

versus conversion plots

b, d, e, f, h, k, a’
800

a, c, g, l

C6D5CD3 TMS

b’
1.4

i, 
j

012345678
/ppm

C6D5CD3 CHCl3

H2O
6.46.8

b’

m

5.25.4

O O

a b b’ a’

e f
g k

h
i

jl

a b c d

e f
g k
h

i
j

l

m

TM

Fig. 9 1H NMR spectrum (in toluene-d8) of the product obtained by the
polymerization of 2 with AEEM/Et1.5AlCl1.5/CH3COOEt in toluene at
0 °C: monomer conversion= 14%; vinyl content= 1.4 mol%
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contain soft or flexible comonomer units, and therefore, the
Tgs of the polymers were lower than those of the corre-
sponding homopolymers [17, 18]. However, our novel
network polymers synthesized in this study can be molded
without containing flexible comonomer units, and they are
expected to be applied as heat-resistant plastics. In addition,
it is known that in the polymer membrane, if the polymer
main chains are rigid and the side chains are bulky sub-
stituents, spaces are present between the polymeric mole-
cules, and their polymer membranes show high gas
permeability [66, 67]. A study on this topic is now under-
way in our laboratory.
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Fig. 10 GPC traces of the products in the synthesis of star-shaped
polymers using monomer divinyl ether 2 or 5 and divinyl ether 6 as a
cross-linker with AEEM/Et1.5AlCl1.5/CH3COOEt in toluene at 0 °C:
[Monomer]0= 0.15M; [AEEM]0= 5.0 mM; [Et1.5AlCl1.5]0= 60 mM;

[CH3COOEt]0= 1.0M; r= [6]0/[P*]0= 10: Purification of End-Star-
Poly(2) by reprecipitation in ethyl acetate from THF and purification
of End-Star-Poly(5) by reprecipitation in a mixture of ethyl acetate and
toluene from THF

Fig. 11 IR spectra of end-
functionalized star-shaped
cyclopolymers before and after
cross-linking: a End-Star-Poly
(2); b End-Star-Poly(5)

Fig. 12 Photographs of membranes after thermal cross-linking: a End-
Star-Poly(2); b End-Star-Poly(5)
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Conclusions

Controlled cationic cyclopolymerizations of divinyl ethers
with a cyclohexene, norbornene, norbornane, cyclic acetal,
or adamantane moiety were carried out. The degree of
cyclization of the polymers was determined to be over
~97%. High-molecular-weight star-shaped cyclopolymers
were obtained by chain-linking reactions among the formed
living cyclopolymers with divinyl ether cross-linker 6.
Cyclopolymers and star-shaped cyclopolymers exhibited
very high glass transition temperatures (Tgs). End-
functionalized star-shaped cyclopolymers were synthe-
sized with divinyl ether monomers 2 or 5 and divinyl ether
cross-linker 6 using a methacrylate-pendant initiator in a
similar manner. Novel networked polymer membranes were
obtained by thermal cross-linking of the methacrylate ter-
mini of the end-functionalized star-shaped polymers.
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