Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reinforcement of polyamide 6/66 with a 9,9′-bis(aryl)fluorene-modified cellulose nanofiber

Abstract

We synthesized cellulose nanofiber (CNF) modified with 9,9′-bis(aryl)fluorene, which has cardo moieties (BCNF), and evaluated the properties of its polyamide 6/66 (PA) composites. As a result, it was revealed that BCNF was well dispersed in PA and had a strong reinforcing effect—even in a temperature range above the glass transition temperature—compared with unmodified CNF due to the high interface affinity between BCNF and PA.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Le Quéré C, Andres RJ, Boden T, Conway T, Houghton RA, House JI, et al. The global carbon budget 1959–2011. Earth Syst Sci Data. 2013;5:165–85.

    Article  Google Scholar 

  2. Smith Pete, Davis Steven J, Creutzig Felix, Fuss Sabine, Minx Jan, Gabrielle Benoit, et al. Biophysical and economic limits to negative CO2 emissions. Nat Clim Change. 2016;6:42–50.

    Article  CAS  Google Scholar 

  3. Rogelj Joeri, Elzen Michelden, Höhne Niklas, Fransen Taryn, Fekete Hanna, Winkler Harald, et al. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature. 2016;534:631–9.

    Article  CAS  Google Scholar 

  4. Levchik SV, Weil ED, Lewin M. Thermal decomposition of aliphatic nylons. Polym Int. 1999;48:532–3.

    Article  CAS  Google Scholar 

  5. Wang W-Z, Zhang Y-H. Environment-friendly synthesis of long chain semiaromatic polyamides. eXPRESS Polym Lett. 2009;3:470–6.

    Article  CAS  Google Scholar 

  6. Mouhmida B, Imada A, Benseddiqa N, Benmedakhe’neb S, Maazouzc A. A study of the mechanical behaviour of a glass fibre reinforced polyamide 6, 6: experimental investigation. Polym Test. 2006;25:544–52.

    Article  Google Scholar 

  7. Davim JPaulo, Silva LeonardoR, António Festas, Abrão AM. Machinability study on precision turning of PA66 polyamide with and without glass fiber reinforcing. Mater Des. 2009;30:228–34.

    Article  Google Scholar 

  8. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, et al. Review: current international research into cellulose nanofibers and nanocomposites. J Mater Sci. 2010;45:1–33.

    Article  CAS  Google Scholar 

  9. Isogai Akira, Saito Tsuguyuki, Fukuzumi Hayaka. TEMPO-oxidized cellulose nanofibers. Nanoscale. 2011;3:71–85.

    Article  CAS  Google Scholar 

  10. Orts WilliamJ, Shey Justin, Imam SyedH, Glenn GregoryM, Guttman MaraE, Revol Jean-Francois. Application of cellulose microfibrils in polymer nanocomposites. J Polym Environ. 2005;13:301–6.

    Article  CAS  Google Scholar 

  11. Nishino Takashi, Matsuda Ikuyo, Hirao Koichi. All-cellulose composite. Macromolecules. 2004;37:7683–7.

    Article  CAS  Google Scholar 

  12. Sato Akihiro, Kabusaki Daisuke, Okumura Hiroaki, Nakatani Takeshi, Nakatsubo Fumiaki, Yano Hiroyuki. Surface modification of cellulose nanofibers with alkenyl succinic anhydride for high-density polyethylene reinforcement. Compos: Part A. 2016;83:72–9.

    Article  CAS  Google Scholar 

  13. Enomoto-Rogers Yukiko, Kamitakahara Hiroshi, Takano Toshiyuki, Nakatsubo Fumiaki. Cellulosic graft copolymer: poly(methyl methacrylate) with cellulose side chains. Biomacromolecules. 2009;10:2110–7.

    Article  CAS  Google Scholar 

  14. Leszczyn´ska Agnieszka, Kicilin´ski Paweł, Pielichowski Krzysztof. Biocomposites of polyamide 4.10 and surface modified microfibrillated cellulose (MFC): influence of processing parameters on structure and thermomechanical properties. Cellulose. 2015;22:2551–69.

    Article  Google Scholar 

  15. Kawasaki Shinichi, Yamada Masahiro, Kobori Kana, Jin Fengzhe, Kondo Yoshikazu, Hayashi Hideki, et al. Synthesis and chemical, physical, and optical properties of 9,9-diarylfluorene-based poly(ether-ether-ketone). Macromolecules. 2007;40:5284–9.

    Article  CAS  Google Scholar 

  16. Kazamaa S, Teramoto T, Haraya K. Carbon dioxide and nitrogen transport properties of bis(phenyl)fluorene-based cardo polymer membranes. J Membr Sci. 2002;207:91–104.

    Article  Google Scholar 

  17. Kawasaki Shinichi, Yamada Masahiro, Kobori Kana, Jin Fengzhe, Takata Toshikazu. Fine dispersion of carbon black in fluorene-based resin. Polym Compos. 2008;29:1044–8.

    Article  CAS  Google Scholar 

  18. Liou Guey-Sheng, Yen Hung-Ju, Su Yi-Ting, Lin Hung-Yi. Synthesis and properties of wholly aromatic polymers bearing cardo fluorene moieties. J Polym Sci: Part A. 2007;45:4352–63.

    Article  CAS  Google Scholar 

  19. Tokumitsu Katsuhisa, Matsuura Takuya, Kawasaki Shinichi, Tashiro Kohji. A study on crystallization behavior for poly (lactic acid) in addition of cardo materials. J Soc Mater Sci Jpn. 2015;64:1–6.

    Article  CAS  Google Scholar 

  20. Kawasaki Shinichi, Yamada Masahiro, Kobori Kana, Sakamoto Hiroki, Kondo Yoshikazu, Jin Fengzhe, et al. Preparation of a novel alloy composed of fluorene-based polyester and polycarbonate and their properties for the optical uses. J Appl Polym Sci. 2009;111:461–8.

    Article  CAS  Google Scholar 

  21. Nanocellulose Symposium 2013. http://www.rish.kyoto-u.ac.jp/labm/wp-content/uploads/2013/04/cellulosesymposium2013.pdf. Accessed 20 Apr 2019.

  22. Müller H, Hoff K. Zur Frage der reduzierten Darstellung des dielektrischen Spektrums bei Hochpolymeren. Kolloid-Z. 1959;166:44.

    Article  Google Scholar 

  23. Terakura Kosuke, Tokumitsu Katsuhisa, Yamada Masahiro, Sugimoto Masayuki. Mechanical and thermal properties of poly(lactic acid) with cellulose nanofiber modified by bisphenol fluorene diglycidyl ether (BPFG). Nihon Reoroji Gakkaishi. 2016;44:39–45.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Sarah Dodds, Ph.D., from the Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Sugimoto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugimoto, M., Yamada, M., Sato, H. et al. Reinforcement of polyamide 6/66 with a 9,9′-bis(aryl)fluorene-modified cellulose nanofiber. Polym J 51, 1189–1195 (2019). https://doi.org/10.1038/s41428-019-0238-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-019-0238-8

This article is cited by

Search

Quick links