Complex formation of a triple-helical peptide with sodium heparin

Abstract

Small-angle X-ray scattering (SAXS) and circular dichroism measurements were carried out for NaHeparin and a triple-helical peptide, H-(Pro-Pro-Gly)10-OH (PPG10), in aqueous sodium chloride (NaCl) at ionic strengths of 20, 50, and 150 mM at different temperatures. While PPG10 forms a triple helix below 25 °C, the melting temperature of the triple helix in the mixed solution is considerably higher (~10 °C) at low CS values than without NaHeparin. Part of the PPG10 molecules formed complexes with NaHeparin in 20 and 50 mM aqueous NaCl at 15 °C, but all solutes were molecularly dispersed at 75 °C, indicating that only triple helices form complexes with NaHeparin. Electrostatic attraction plays an important role in the complexation, since no complex formation was observed in 150 mM aqueous NaCl. The scattering function of the complex was explained by the presence of a thick wormlike chain, indicating that the molecular shape is different from that of the previously investigated complex with polyacrylic acid and carboxymethyl amylose. This suggests appreciable attractive interaction between the triple-helical part of PPG10 and NaHeparin.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Engel J, Kurtz J, Katchalski E, Berger A. Polymers of tripeptides as collagen models. J Mol Biol. 1966;17:255–72.

    CAS  Article  Google Scholar 

  2. 2.

    Sakakibara S, Kishida Y, Kikuchi Y, Sakai R, Kakiuchi K. Synthesis of poly-(L-prolyl-L-prolylglycyl) of defined molecular weights. Bull Chem Soc Jpn. 1968;41:1273.

    CAS  Article  Google Scholar 

  3. 3.

    Kobayashi Y, Sakai R, Kakiuchi K, Isemura T. Physicochemical analysis of (Pro-Pro-Gly)n with defined molecular weight-temperature dependence of molecular weight in aqueous solution. Biopolymers. 1970;9:415–25.

    CAS  Article  Google Scholar 

  4. 4.

    Stokke BT, Elgsaeter A, Brant DA, Kuge T, Kitamura S. Macromolecular cyclization of (1– > 6)-branched-(1– > 3)-beta-D-glucans observed after denaturation-renaturation of the triple-helical structure. Biopolymers. 1993;33:193–8.

    CAS  Article  Google Scholar 

  5. 5.

    Matsuda Y, Sugiura F, Okumura K, Tasaka S. Renaturation behavior of xanthan with high molar mass and wide molar mass distribution. Polym J. 2016;48:653–8.

    CAS  Article  Google Scholar 

  6. 6.

    Matsuda Y, Okumura K, Tasaka S. Molar mass dependence of structure of xanthan thermally denatured and renatured in dilute solution. Polym J. 2018;50:1043–9.

    CAS  Article  Google Scholar 

  7. 7.

    Shoulders MD, Raines RT. Collagen structure and stability. Annu Rev Biochem. 2009;78:929–58.

    CAS  Article  Google Scholar 

  8. 8.

    Berisio R, De Simone A, Ruggiero A, Improta R, Vitagliano L. Role of side chains in collagen triple helix stabilization and partner recognition. J Pept Sci. 2009;15:131–40.

    CAS  Article  Google Scholar 

  9. 9.

    Okuyama K. Revisiting the molecular structure of collagen. Connect Tissue Res. 2008;49:299–310.

    CAS  Article  Google Scholar 

  10. 10.

    Fields GB. Synthesis and biological applications of collagen-model triple-helical peptides. Org Biomol Chem. 2010;8:1237–58.

    CAS  Article  Google Scholar 

  11. 11.

    Fallas JA, O’Leary LER, Hartgerink JD. Synthetic collagen mimics: self-assembly of homotrimers, heterotrimers and higher order structures. Chem Soc Rev. 2010;39:3510–27.

    CAS  Article  Google Scholar 

  12. 12.

    Fan CY, Huang CC, Chiu WC, Lai CC, Liou GG, Li HC, et al. Production of multivalent protein binders using a self-trimerizing collagen-like peptide scaffold. FASEB J. 2008;22:3795–804.

    CAS  Article  Google Scholar 

  13. 13.

    Ndinguri MW, Zheleznyak A, Lauer JL, Anderson CJ, Fields GB. Application of collagen-model triple-helical peptide-amphiphiles for CD44-targeted drug delivery systems. J. Drug Deliv. 2012;2012:592602.

    Article  Google Scholar 

  14. 14.

    Yasui H, Yamazaki CM, Nose H, Awada C, Takao T, Koide T. Potential of collagen-like triple helical peptides as drug carriers: Their in vivo distribution, metabolism, and excretion profiles in rodents. Biopolymers. 2013;100:705–13.

    CAS  Article  Google Scholar 

  15. 15.

    Yamazaki CM, Nakase I, Endo H, Kishimoto S, Mashiyama Y, Masuda R, et al. Collagen-like cell-penetrating peptides. Angew Chem Int Ed. 2013;52:5497–500.

    CAS  Article  Google Scholar 

  16. 16.

    Shinde A, Feher KM, Hu C, Slowinska K. Peptide internalization enabled by folding: triple helical cell-penetrating peptides. J Pept Sci. 2015;21:77–84.

    CAS  Article  Google Scholar 

  17. 17.

    Bennink LL, Smith DJ, Foss CA, Pomper MG, Li Y, Yu SM. High serum stability of collagen hybridizing peptides and their fluorophore conjugates. Mol Pharm. 2017;14:1906–15.

    CAS  Article  Google Scholar 

  18. 18.

    Okuyama K, Okuyama K, Arnott S, Takayanagi M, Kakudo M. Crystal and molecular structure of a collagen-like polypeptide (Pro-Pro-Gly)10. J Mol Biol. 1981;152:427–43.

    CAS  Article  Google Scholar 

  19. 19.

    Terao K, Mizuno K, Murashima M, Kita Y, Hongo C, Okuyama K, et al. Chain dimensions and hydration behavior of collagen model peptides in aqueous solution: [Glycyl-4(R)-hydroxyprolyl-4(R)-hydroxyproline](n), [glycylprolyl-4(R)-hydroxyproline](n), and some related model peptides. Macromolecules. 2008;41:7203–10.

    CAS  Article  Google Scholar 

  20. 20.

    Shikata T, Minakawa A, Okuyama K. Structure, dynamics, and hydration of a collagen model polypeptide, (L-prolyl-L-prolylglycyl)10, in aqueous media: A chemical equilibrium analysis of triple helix-to-single coil transition. J Phys Chem B. 2009;113:14504–12.

    CAS  Article  Google Scholar 

  21. 21.

    Kita Y, Terao K, Sato T. Stabilization of the triple helical structure of a collagen model peptide by complexation with polyacrylic acid in methanol. Kobunshi Ronbunshu. 2010;67:686–9.

    CAS  Article  Google Scholar 

  22. 22.

    Terao K, Kanenaga R, Sato T, Mizuno K, Bächinger HP. Complex formation of collagen model peptides with polyelectrolytes and stabilization of the triple helical structure. Macromolecules. 2012;45:392–400.

    CAS  Article  Google Scholar 

  23. 23.

    Terao K, Kanenaga R, Yoshida T, Mizuno K, Bächinger HP. Temperature induced complex formation-deformation behavior of collagen model peptides and polyelectrolytes in aqueous solution. Polymer. 2015;64:8–13.

    CAS  Article  Google Scholar 

  24. 24.

    Ryoki A, Ida D, Terao K. Scattering function of semi-rigid cyclic polymers analyzed in terms of worm-like rings: cyclic amylose tris(phenylcarbamate) and cyclic amylose tris(n-butylcarbamate). Polym J. 2017;49:633–7.

    CAS  Article  Google Scholar 

  25. 25.

    Uramoto K, Takahashi R, Terao K, Sato T. Local and global conformations of flower micelles and flower necklaces formed by an amphiphilic alternating copolymer in aqueous solution. Polym J. 2016;48:863–7.

    CAS  Article  Google Scholar 

  26. 26.

    Shimizu N, Yatabe K, Nagatani Y, Saijyo S, Kosuge T, Igarashi N. Software development for analysis of small-angle X-ray scattering data. AIP Conf Proc. 2016;1741:050017.

  27. 27.

    Glatter O, Kratky O. Small angle X-ray scattering. London: Academic Press; 1982.

    Google Scholar 

  28. 28.

    Yamakawa H, Yoshizaki T. Helical wormlike chains in polymer solutions. 2nd ed. Berlin, Germany: Springer; 2016.

    Google Scholar 

  29. 29.

    Nakamura Y, Norisuye T. 2.02-Polymer properties in solutions. In: Krzysztof M, Martin M, editors. Polymer science: a comprehensive reference. Amsterdam: Elsevier, 2012. p. 5–32.

  30. 30.

    Burchard W, Kajiwara K. The statistics of stiff chain molecules. I. The particle scattering factor. Proc R Soc Lond, Ser A. 1970;316:185–99.

    CAS  Article  Google Scholar 

  31. 31.

    Nagasaka K, Yoshizaki T, Shimada J, Yamakawa H. More on the scattering function of helical wormlike chains. Macromolecules 1991;24:924–31.

    CAS  Article  Google Scholar 

  32. 32.

    Nakamura Y, Norisuye T. Brush-like polymers. In: Borsali R, Pecora R, editors. Soft matter characterization. Netherlands: Springer; 2008. p. 235–86.

    Google Scholar 

  33. 33.

    Nakamura Y, Norisuye T. Scattering function for wormlike chains with finite thickness. J Polym Sci, Part B: Polym Phys. 2004;42:1398–407.

    CAS  Article  Google Scholar 

  34. 34.

    Pavlov G, Finet S, Tatarenko K, Korneeva E, Ebel C. Conformation of heparin studied with macromolecular hydrodynamic methods and X-ray scattering. Eur Biophys J. 2003;32:437–49.

    CAS  Article  Google Scholar 

  35. 35.

    Hayashi K, Tsutsumi K, Norisuye T, Teramoto A. Electrostatic contributions to chain stiffness and excluded-volume effects in sodium hyaluronate solutions. Polym J. 1996;28:922–8.

    CAS  Article  Google Scholar 

  36. 36.

    Khan S, Gor J, Mulloy B, Perkins SJ. Semi-rigid solution structures of heparin by constrained X-ray scattering modelling: new insight into heparin-protein complexes. J Mol Biol. 2010;395:504–21.

    CAS  Article  Google Scholar 

  37. 37.

    Johansson JA, Halthur T, Herranen M, Soderberg L, Elofsson U, Hilborn J. Build-up of collagen and hyaluronic acid polyelectrolyte multilayers. Biomacromolecules. 2005;6:1353–9.

    CAS  Article  Google Scholar 

  38. 38.

    Zhang J, Senger B, Vautier D, Picart C, Schaaf P, Voegel JC, et al. Natural polyelectrolyte films based on layer-by layer deposition of collagen and hyaluronic acid. Biomaterials. 2005;26:3353–61.

    CAS  Article  Google Scholar 

  39. 39.

    Li W, Zhao P, Lin C, Wen X, Katsanevakis E, Gero D, et al. Natural polyelectrolyte self-assembled multilayers based on collagen and alginate: stability and cytocompatibility. Biomacromolecules. 2013;14:2647–56.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. Takahiro Sato at Osaka University for the fruitful discussion and Dr. Noboru Ohta (SPring-8), Prof. Noriyuki Igarashi (KEK), and Prof. Nobutaka Shimizu (KEK) for the SAXS measurements. The SAXS data were acquired at the BL40B2 beamline in SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal Nos. 2015B1100, 2016A1053, and 2016B1088) and at the BL-10C beamline in KEK-PF under the approval of the Photon Factory Program Advisory Committee (Proposal No. 2011G557). This work was partially supported by JSPS KAKENHI Grant Nos. JP17K05884 and JP18H02020.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ken Terao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ishida, S., Yoshida, T. & Terao, K. Complex formation of a triple-helical peptide with sodium heparin. Polym J 51, 1181–1187 (2019). https://doi.org/10.1038/s41428-019-0234-z

Download citation

Further reading

Search