Artificial melanin particles: new building blocks for biomimetic structural coloration

Abstract

Melanin, a black component of human hair, plays an important role in bright structural colorations in nature. For example, the beautiful and highly visible colorations of peacock feathers are achieved by periodic structures formed by melanin granules that have light absorbing capabilities. In recent years, polydopamine, which is easily obtained by the self-oxidative polymerization of dopamine, has attracted attention as a mimic of natural melanin. This focus review provides an overview of our recent research on structural color materials created using polydopamine-based artificial melanin particles and research trends in this area.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Goerlitzer ESA, Klupp Taylor RN, Vogel N. Bioinspired photonic pigments from colloidal self-assembly. Adv Mater. 2018;30:1706654.

    Google Scholar 

  2. 2.

    Vinther J, Briggs DE, Clarke J, Mayr G, Prum RO. Structural coloration in a fossil feather. Biol Lett. 2010;6:128–31.

    PubMed  Google Scholar 

  3. 3.

    Yamanaka J, Murai M, Iwayama Y, Yonese M, Ito K, Sawada T. One-directional crystal growth in charged colloidal silica dispersions driven by diffusion of base. J Am Chem Soc. 2004;126:7156–7.

    CAS  PubMed  Google Scholar 

  4. 4.

    Yoshinaga K, Fujiwara K, Mouri E, Ishii M, Nakamura H. Stepwise controlled immobilization of colloidal crystals formed by polymer-grafted silica particles. Langmuir. 2005;21:4471–7.

    CAS  PubMed  Google Scholar 

  5. 5.

    Fudouzi H, Sawada T. Photonic rubber sheets with tunable color by elastic deformation. Langmuir. 2006;22:1365–8.

    CAS  PubMed  Google Scholar 

  6. 6.

    Furumi S. Self-assembled organic and polymer photonic crystals for laser applications. Polym J. 2013;45:579–93.

    CAS  Google Scholar 

  7. 7.

    Fujii S, Yamashita Y, Nakamura Y, Tsuchida A, Okubo T. Cationic gel crystals and amorphous-solids of lightly cross-linked poly (2-vinylpyridine) spheres in the deionized aqueous suspension. Colloid Polym Sci. 2014;292:1627–37.

    CAS  Google Scholar 

  8. 8.

    Suzuki D, Shibata K, Tsuchida A, Okubo T. Thermo-sensitive colloidal crystals composed of monodisperse colloidal silica- and poly(N-isopropyl acrylamide) gel spheres. Colloid Polym Sci. 2015;293:2763–9.

    CAS  Google Scholar 

  9. 9.

    Takeoka Y. Angle-independent colored materials based on the christiansen effect using phase-separated polymer membranes. Polym J. 2017;49:301–8.

    CAS  Google Scholar 

  10. 10.

    Katagiri K, Tanaka Y, Uemura K, Inumaru K, Seki T, Takeoka Y. Structural color coating films composed of an amorphous array of colloidal particles via electrophoretic deposition. NPG Asia Mater. 2017;9:e355.

    CAS  Google Scholar 

  11. 11.

    Ueno K. Soft materials based on colloidal self-assembly in ionic liquids. Polym J. 2018;50:951–8.

    CAS  Google Scholar 

  12. 12.

    Xia Y, Gates B, Yin Y, Lu Y. Monodispersed colloidal spheres: old materials with mew applications. Adv Mater. 2000;12:693–713.

    CAS  Google Scholar 

  13. 13.

    Ge J, Yin Y. Responsive photonic crystals. Angew Chem Int Ed. 2011;50:1492–522.

    CAS  Google Scholar 

  14. 14.

    Kolle M, Lee S. Progress and opportunities in soft photonics and biologically inspired optics. Adv Mater. 2018;30:1702669.

    Google Scholar 

  15. 15.

    Kinoshita S, Yoshioka S, Fujii Y, Okamoto N. Photophysics of structural color in the Morpho butterflies. Forma. 2002;17:103–21.

    Google Scholar 

  16. 16.

    Yoshioka S, Kinoshita S, Iida H, Hariyama T. Phase-adjusting layers in the multilayer reflector of a jewel beetle. J Phys Soc Jpn. 2012;81:054801.

    Google Scholar 

  17. 17.

    Yoshioka S, Kinoshita S. Effect of macroscopic structure in iridescent color of the peacock feathers. Forma. 2002;17:169–81.

    Google Scholar 

  18. 18.

    Riley PA. Melanin. Int J Biochem Cell Biol. 1997;29:1235–9.

    CAS  PubMed  Google Scholar 

  19. 19.

    Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings. Science. 2007;318:426–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Dreyer DR, Miller DJ, Freeman BD, Paul DR, Bielawski CW. Perspectives on poly(dopamine). Chem Sci. 2013;4:3796–802.

    CAS  Google Scholar 

  21. 21.

    Liu Y, Ai K, Lu L. Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev. 2014;114:5057–115.

    CAS  PubMed  Google Scholar 

  22. 22.

    Kohri M, Kohma H, Shinoda Y, Yamauchi M, Yagai S.Kojima T, et al. A colorless functional polydopamine thin layer as a basis for polymer capsules. Polym Chem. 2013;4:2696–702.

    CAS  Google Scholar 

  23. 23.

    Kohri M, Shinoda Y, Kohma H, Nannichi Y, Yamauchi M, Yagai S, et al. Facile synthesis of free-standing polymer brush films based on a colorless polydopamine thin layer. Macromol Rapid Commun. 2013;34:1220–4.

    CAS  PubMed  Google Scholar 

  24. 24.

    Kohma H, Uradokoro K, Kohri M, Taniguchi T, Kishikawa K. Hierarchically structured coatings by colorless polydopamine thin layer and polymer brush layer. Trans Mat Res Soc Jpn. 2014;39:157–60.

    CAS  Google Scholar 

  25. 25.

    Kohri M, Yamazaki S, Irie S, Teramoto N, Taniguchi T, Kishikawa K. Adhesion control of branched catecholic polymers by acid stimulation. ACS Omega. 2018;3:16626–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    d’Ischia M, Napolitano A, Ball V, Chen CT, Buehler MJ. Polydopamine and eumelanin: from structure-property relationships to a unified tailoring strategy. Acc Chem Res. 2014;47:3541–50.

    PubMed  Google Scholar 

  27. 27.

    Huang Y, Li Y, Hu Z, Yue X, Proetto MT, Jones Y, et al. Mimicking melanosomes: polydopamine nanoparticles as artificial microparasols. ACS Cent Sci. 2017;3:564–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Bao X, Zhao J, Sun J, Hu M, Yang X. Polydopamine nanoparticles as efficient scavengers for reactive oxygen species in periodontal disease. ACS Nano. 2018;12:8882–92.

    CAS  PubMed  Google Scholar 

  29. 29.

    Ju KY, Lee Y, Lee S, Park SB, Lee JK. Bioinspired polymerization of dopamine to generate melanin-like nanoparticles having an excellent free-radical-scavenging property. Biomacromolecules. 2011;12:625–32.

    CAS  PubMed  Google Scholar 

  30. 30.

    Kohri M, Fukushima H, Taniguchi T, Nakahira T. Synthesis of polyarbutin by oxidative polymerization using PEGylated hematin as a biomimetic catalyst. Polym J. 2010;42:952–5.

    CAS  Google Scholar 

  31. 31.

    Kohri M, Sato M, Abo F, Inada T, Kasuya M, Taniguchi T, et al. Preparation and lectin binding specificity of polystyrene particles grafted with glycopolymers bearing S-linked carbohydrates. Eur Polym J. 2011;47:2351–60.

    CAS  Google Scholar 

  32. 32.

    Kohri M, Kobayashi A, Fukushima H, Kojima T, Taniguchi T, Saito K, et al. Enzymatic miniemulsion polymerization of styrene with a polymerizable surfactant. Polym Chem. 2012;3:900–6.

    CAS  Google Scholar 

  33. 33.

    Fukushima H, Kohri M, Kojima T, Taniguchi T, Saito K, Nakahira T. Surface-initiated enzymatic vinyl polymerization: synthesis of polymer-grafted silica particles using horseradish peroxidase as catalyst. Polym Chem. 2012;3:1123–5.

    CAS  Google Scholar 

  34. 34.

    Kohri M, Kobayashi A, Fukushima H, Taniguchi T, Nakahira T. Effect of surfactant type on enzymatic miniemulsion polymerization using horseradish peroxidase as a catalyst. Chem Lett. 2012;41:1131–3.

    CAS  Google Scholar 

  35. 35.

    Kohri M, Uzawa S, Kobayashi A, Fukushima H, Taniguchi T, Nakahira T. Enzymatic emulsifier-free emulsion polymerization to prepare polystyrene particles using horseradish peroxidase as a catalyst. Polym J. 2013;45:354–8.

    CAS  Google Scholar 

  36. 36.

    Kohri M. Development of HRP-mediated enzymatic polymerization under heterogeneous conditions for the preparation of functional particles. Polym J. 2014;46:373–80.

    CAS  Google Scholar 

  37. 37.

    Hamada K, Kohri M, Taniguchi T, Kishikawa K. In-situ assembly of diblock copolymers onto submicron-sized particles for preparation of core-shell and ellipsoidal particles. Colloids Surf A 2017;512:80–6.

    CAS  Google Scholar 

  38. 38.

    Kohri M, Nannichi Y, Kohma H, Abe D, Kojima T, Taniguchi T, et al. Size control of polydopamine nodules formed on polystyrene particles during dopamine polymerization with carboxylic acid-containing compounds for the fabrication of raspberry-like particles. Colloids Surf A. 2014;449:114–20.

    CAS  Google Scholar 

  39. 39.

    Kohri M, Nannichi Y, Taniguchi T, Kishikawa K. Biomimetic non-iridescent structural color materials from polydopamine black particles that mimic melanin granules. J Mater Chem C. 2015;3:720–4.

    CAS  Google Scholar 

  40. 40.

    Xiao M, Li Y, Allen MC, Deheyn DD, Yue X, Zhao J, et al. Bio-inspired structural colors produced via self-assembly of synthetic melanin nanoparticles. ACS Nano. 2015;9:5454–60.

    CAS  PubMed  Google Scholar 

  41. 41.

    Xiao M, Li Y, Zhao J, Wang Z, Gao M, Gianneschi NC, et al. Stimuli-responsive structurally colored films from bioinspired synthetic melanin nanoparticles. Chem Mater. 2016;28:5516–21.

    CAS  Google Scholar 

  42. 42.

    Forster JD, Noh H, Liew SF, Saranathan V, Schreck CF, Yang L, et al. Biomimetic isotropic nanostructures for structural coloration. Adv Mater. 2010;22:2939–44.

    CAS  PubMed  Google Scholar 

  43. 43.

    Takeoka Y, Yoshioka S, Takano A, Arai S, Nueangnoraj K, Nishihara H, et al. Production of colored pigments with amorphous arrays of black and white colloidal particles. Angew Chem Int Ed. 2013;52:7261–5.

    CAS  Google Scholar 

  44. 44.

    Takeoka Y. Environment and human friendly colored materials prepared using black and white components. Chem Commun. 2018;54:4905–14.

    CAS  Google Scholar 

  45. 45.

    Zhang Y, Dong B, Chen A, Liu X, Shi L, Zi J. Using cuttlefish ink as an additive to produce non-iridescent structural colors of high color visibility. Adv Mater. 2015;27:4719–24.

    CAS  PubMed  Google Scholar 

  46. 46.

    Yang X, Ge D, Wu G, Liao Z, Yang S. Production of structural colors with high contrast and wide viewing angles from assemblies of polypyrrole black coated polystyrene nanoparticles. ACS Appl Mater Interfaces. 2016;8:16289–95.

    CAS  PubMed  Google Scholar 

  47. 47.

    Cho S, Shim TS, Kim JH, Kim DH, Kim SH. Selective coloration of melanin nanospheres through resonant mie scattering. Adv Mater. 2017;29:1700256.

    Google Scholar 

  48. 48.

    Shawkey MD, D’Alba L, Xiao M, Schutte M, Buchholz R. Ontogeny of an iridescent nanostructure composed of hollow melanosomes. J Morphol. 2015;276:378–84.

    PubMed  Google Scholar 

  49. 49.

    Kawamura A, Kohri M, Morimoto G, Nannichi Y, Taniguchi T, Kishikawa K. Full-color biomimetic photonic materials with iridescent and non-iridescent structural colors. Sci Rep. 2016;6:33984.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Prum RO, Torres R, Williamson S, Dyck J. Coherent light scattering by blue feather barbs. Nature. 1998;396:28–9.

    CAS  Google Scholar 

  51. 51.

    Takeoka Y. Angle-independent structural coloured amorphous arrays. J Mater Chem. 2012;22:23299–309.

    CAS  Google Scholar 

  52. 52.

    Yoshioka S, Takeoka Y. Production of colourful pigments using amorphous arrays of silica particles. ChemPhysChem. 2015;15:2209–15.

    Google Scholar 

  53. 53.

    Kawamura A, Kohri M, Yoshioka S, Taniguchi T, Kishikawa K. Structural color tuning: mixing melanin-like particles with different diameters to create neutral colors. Langmuir. 2017;33:3824–30.

    CAS  PubMed  Google Scholar 

  54. 54.

    Iwasaki T, Tamai Y, Yamamoto M, Taniguchi T, Kishikawa K, Kohri M. Melanin precursor influence on structural colors from artificial melanin particles: polyDOPA, polydopamine, and polynorepinephrine. Langmuir. 2018;34:11814–21.

    CAS  PubMed  Google Scholar 

  55. 55.

    Hong S, Na YS, Choi S, Song IT, Kim WY, Lee H. Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation. Adv Funct Mater. 2012;22:4711–7.

    CAS  Google Scholar 

  56. 56.

    Hong S, Kim J, Na YS, Park J, Kim S, Singha K, et al. Poly(norepinephrine): ultrasmooth material-independent surface chemistry and nanodepot for nitric oxide. Angew Chem Int Ed. 2013;52:9187–91.

    CAS  Google Scholar 

  57. 57.

    Hong S, Wang Y, Park SY, Lee H. Progressive fuzzy cation-π assembly of biological catecholamines. Sci Adv. 2018;4:eaat7457.

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Kawamura A, Kohri M, Oku H, Hamada K, Nakagawa K, Taniguchi T, et al. Structural color materials from polydopamine-inorganic hybrid thin films inspired by rock pigeon feathers. Kobunshi Ronbunshu. 2017;74:54–8.

    CAS  Google Scholar 

  59. 59.

    Wu TF, Hong JD. Dopamine-melanin nanofilms for biomimetic structural coloration. Biomacromolecules. 2015;16:660–6.

    CAS  PubMed  Google Scholar 

  60. 60.

    Nakamura E, Yoshioka S, Kinoshita S. Structural color of rock dove’s neck feather. J Phys Soc Jpn. 2008;77:124801.

    Google Scholar 

  61. 61.

    Zhang C, Wu BH, Du Y, Ma MQ, Xu ZK. Mussel-inspired polydopamine coatings for large-scale and angle-independent structural colors. J Mater Chem C. 2017;5:3898–902.

    Google Scholar 

  62. 62.

    Kohri M, Tamai Y, Kawamura A, Jido K, Yamamoto M, Taniguchi T, et al. Ellipsoidal artificial melanin particles as building blocks for biomimetic structural coloration. Langmuir. 2019;35:5574–80.

    CAS  PubMed  Google Scholar 

  63. 63.

    Yi B, Shen H. Liquid-immune structural colors with angle-independence inspired from hollow melanosomes. Chem Commun. 2017;53:9234–37.

    CAS  Google Scholar 

  64. 64.

    Yi B, Shen H. Facile fabrication of crack-free photonic crystals with enhanced color contrast and low angle dependence. J Mater Chem C. 2017;5:8194–200.

    CAS  Google Scholar 

  65. 65.

    Yi B, Shen H. Structurally colored films with superhydrophobicity and wide viewing angles based on bumpy melanin-like particles. Appl Surf Sci. 2018;427:1129–36.

    CAS  Google Scholar 

  66. 66.

    Chen G, Yi B, Huang Y, Liang Q, Shen H. Development of bright and low angle dependence structural colors from order-disorder hierarchical photonic structure. Dyes Pigments. 2019;161:464–9.

    CAS  Google Scholar 

  67. 67.

    Liu P, Chen J, Zhang Z, Xie Z, Du X, Gu Z. Bio-inspired robust non-iridescent structural color with self-adhesive amorphous colloidal particle arrays. Nanoscale. 2018;10:3673–9.

    CAS  PubMed  Google Scholar 

  68. 68.

    Kohri M, Uradokoro K, Nannichi Y, Kawamura A, Taniguchi T, Kishikawa K. Hairy polydopamine particles as platforms for photonic and magnetic materials. Photonics. 2018;5:36.

    CAS  Google Scholar 

  69. 69.

    Kohri M, Yamazaki S, Kawamura A, Taniguchi T, Kishikawa K. Bright structural color films independent of background prepared by the dip-coating of biomimetic melanin-like particles having polydopamine shell layers. Colloids Surf A. 2017;532:564–9.

    CAS  Google Scholar 

  70. 70.

    Kohri M, Irie S, Yamazaki S, Kohaku K, Taniguchi T, Kishikawa K. Acid-induced control of surface properties using a catecholic silane coupling reagent. Chem Lett. 2019;48:551–4.

    CAS  Google Scholar 

  71. 71.

    Kawamura A, Kohri M, Taniguchi T, Kishikawa K. Surface modification of polydopamine particles via magnetically-responsive surfactants. Trans Mat Res Soc Jpn. 2016;41:301–4.

    CAS  Google Scholar 

  72. 72.

    Kohri M, Yanagimoto K, Kohaku K, Shiomoto S, Kobayashi M, Imai A, et al. Magnetically responsive polymer network constructed by poly(acrylic acid) and holmium. Macromolecules. 2018;51:6740–5.

    CAS  Google Scholar 

  73. 73.

    Kohri M, Yanagimoto K, Kawamura A, Hamada K, Imai Y, Watanabe T, et al. Polydopamine-based 3D colloidal photonic materials: structural color balls and fibers from melanin-like particles with polydopamine shell layers. ACS Appl Mater Interfaces. 2018;10:7640–8.

    CAS  PubMed  Google Scholar 

  74. 74.

    Xiao M, Hu Z, Wang Z, Li Y, Tormo AD, Le Thomas N, et al. Bioinspired bright noniridescent photonic melanin supraballs. Sci Adv. 2017;3:e1701151.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

These studies were financially supported by JSPS KAKENHI (grant numbers 15H01593, 16K14072, and 17H03110), the Noguchi Institute, the JGC-S Scholarship Foundation, the Murata Science Foundation, the Hatayama Foundation, the Konica Minolta Science and Technology Foundation, the Iketani Science and Technology Foundation, the Toyo Gosei Memorial Foundation, and a Chiba University Venture Business Laboratory project. I am deeply grateful to the collaborators and students listed in the papers cited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michinari Kohri.

Ethics declarations

Conflict of interest

The author declares he has have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kohri, M. Artificial melanin particles: new building blocks for biomimetic structural coloration. Polym J 51, 1127–1135 (2019). https://doi.org/10.1038/s41428-019-0231-2

Download citation

Further reading

Search