Artificial melanin particles: new building blocks for biomimetic structural coloration

Abstract

Melanin, a black component of human hair, plays an important role in bright structural colorations in nature. For example, the beautiful and highly visible colorations of peacock feathers are achieved by periodic structures formed by melanin granules that have light absorbing capabilities. In recent years, polydopamine, which is easily obtained by the self-oxidative polymerization of dopamine, has attracted attention as a mimic of natural melanin. This focus review provides an overview of our recent research on structural color materials created using polydopamine-based artificial melanin particles and research trends in this area.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Goerlitzer ESA, Klupp Taylor RN, Vogel N. Bioinspired photonic pigments from colloidal self-assembly. Adv Mater. 2018;30:1706654.

  2. 2.

    Vinther J, Briggs DE, Clarke J, Mayr G, Prum RO. Structural coloration in a fossil feather. Biol Lett. 2010;6:128–31.

  3. 3.

    Yamanaka J, Murai M, Iwayama Y, Yonese M, Ito K, Sawada T. One-directional crystal growth in charged colloidal silica dispersions driven by diffusion of base. J Am Chem Soc. 2004;126:7156–7.

  4. 4.

    Yoshinaga K, Fujiwara K, Mouri E, Ishii M, Nakamura H. Stepwise controlled immobilization of colloidal crystals formed by polymer-grafted silica particles. Langmuir. 2005;21:4471–7.

  5. 5.

    Fudouzi H, Sawada T. Photonic rubber sheets with tunable color by elastic deformation. Langmuir. 2006;22:1365–8.

  6. 6.

    Furumi S. Self-assembled organic and polymer photonic crystals for laser applications. Polym J. 2013;45:579–93.

  7. 7.

    Fujii S, Yamashita Y, Nakamura Y, Tsuchida A, Okubo T. Cationic gel crystals and amorphous-solids of lightly cross-linked poly (2-vinylpyridine) spheres in the deionized aqueous suspension. Colloid Polym Sci. 2014;292:1627–37.

  8. 8.

    Suzuki D, Shibata K, Tsuchida A, Okubo T. Thermo-sensitive colloidal crystals composed of monodisperse colloidal silica- and poly(N-isopropyl acrylamide) gel spheres. Colloid Polym Sci. 2015;293:2763–9.

  9. 9.

    Takeoka Y. Angle-independent colored materials based on the christiansen effect using phase-separated polymer membranes. Polym J. 2017;49:301–8.

  10. 10.

    Katagiri K, Tanaka Y, Uemura K, Inumaru K, Seki T, Takeoka Y. Structural color coating films composed of an amorphous array of colloidal particles via electrophoretic deposition. NPG Asia Mater. 2017;9:e355.

  11. 11.

    Ueno K. Soft materials based on colloidal self-assembly in ionic liquids. Polym J. 2018;50:951–8.

  12. 12.

    Xia Y, Gates B, Yin Y, Lu Y. Monodispersed colloidal spheres: old materials with mew applications. Adv Mater. 2000;12:693–713.

  13. 13.

    Ge J, Yin Y. Responsive photonic crystals. Angew Chem Int Ed. 2011;50:1492–522.

  14. 14.

    Kolle M, Lee S. Progress and opportunities in soft photonics and biologically inspired optics. Adv Mater. 2018;30:1702669.

  15. 15.

    Kinoshita S, Yoshioka S, Fujii Y, Okamoto N. Photophysics of structural color in the Morpho butterflies. Forma. 2002;17:103–21.

  16. 16.

    Yoshioka S, Kinoshita S, Iida H, Hariyama T. Phase-adjusting layers in the multilayer reflector of a jewel beetle. J Phys Soc Jpn. 2012;81:054801.

  17. 17.

    Yoshioka S, Kinoshita S. Effect of macroscopic structure in iridescent color of the peacock feathers. Forma. 2002;17:169–81.

  18. 18.

    Riley PA. Melanin. Int J Biochem Cell Biol. 1997;29:1235–9.

  19. 19.

    Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings. Science. 2007;318:426–30.

  20. 20.

    Dreyer DR, Miller DJ, Freeman BD, Paul DR, Bielawski CW. Perspectives on poly(dopamine). Chem Sci. 2013;4:3796–802.

  21. 21.

    Liu Y, Ai K, Lu L. Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev. 2014;114:5057–115.

  22. 22.

    Kohri M, Kohma H, Shinoda Y, Yamauchi M, Yagai S.Kojima T, et al. A colorless functional polydopamine thin layer as a basis for polymer capsules. Polym Chem. 2013;4:2696–702.

  23. 23.

    Kohri M, Shinoda Y, Kohma H, Nannichi Y, Yamauchi M, Yagai S, et al. Facile synthesis of free-standing polymer brush films based on a colorless polydopamine thin layer. Macromol Rapid Commun. 2013;34:1220–4.

  24. 24.

    Kohma H, Uradokoro K, Kohri M, Taniguchi T, Kishikawa K. Hierarchically structured coatings by colorless polydopamine thin layer and polymer brush layer. Trans Mat Res Soc Jpn. 2014;39:157–60.

  25. 25.

    Kohri M, Yamazaki S, Irie S, Teramoto N, Taniguchi T, Kishikawa K. Adhesion control of branched catecholic polymers by acid stimulation. ACS Omega. 2018;3:16626–32.

  26. 26.

    d’Ischia M, Napolitano A, Ball V, Chen CT, Buehler MJ. Polydopamine and eumelanin: from structure-property relationships to a unified tailoring strategy. Acc Chem Res. 2014;47:3541–50.

  27. 27.

    Huang Y, Li Y, Hu Z, Yue X, Proetto MT, Jones Y, et al. Mimicking melanosomes: polydopamine nanoparticles as artificial microparasols. ACS Cent Sci. 2017;3:564–9.

  28. 28.

    Bao X, Zhao J, Sun J, Hu M, Yang X. Polydopamine nanoparticles as efficient scavengers for reactive oxygen species in periodontal disease. ACS Nano. 2018;12:8882–92.

  29. 29.

    Ju KY, Lee Y, Lee S, Park SB, Lee JK. Bioinspired polymerization of dopamine to generate melanin-like nanoparticles having an excellent free-radical-scavenging property. Biomacromolecules. 2011;12:625–32.

  30. 30.

    Kohri M, Fukushima H, Taniguchi T, Nakahira T. Synthesis of polyarbutin by oxidative polymerization using PEGylated hematin as a biomimetic catalyst. Polym J. 2010;42:952–5.

  31. 31.

    Kohri M, Sato M, Abo F, Inada T, Kasuya M, Taniguchi T, et al. Preparation and lectin binding specificity of polystyrene particles grafted with glycopolymers bearing S-linked carbohydrates. Eur Polym J. 2011;47:2351–60.

  32. 32.

    Kohri M, Kobayashi A, Fukushima H, Kojima T, Taniguchi T, Saito K, et al. Enzymatic miniemulsion polymerization of styrene with a polymerizable surfactant. Polym Chem. 2012;3:900–6.

  33. 33.

    Fukushima H, Kohri M, Kojima T, Taniguchi T, Saito K, Nakahira T. Surface-initiated enzymatic vinyl polymerization: synthesis of polymer-grafted silica particles using horseradish peroxidase as catalyst. Polym Chem. 2012;3:1123–5.

  34. 34.

    Kohri M, Kobayashi A, Fukushima H, Taniguchi T, Nakahira T. Effect of surfactant type on enzymatic miniemulsion polymerization using horseradish peroxidase as a catalyst. Chem Lett. 2012;41:1131–3.

  35. 35.

    Kohri M, Uzawa S, Kobayashi A, Fukushima H, Taniguchi T, Nakahira T. Enzymatic emulsifier-free emulsion polymerization to prepare polystyrene particles using horseradish peroxidase as a catalyst. Polym J. 2013;45:354–8.

  36. 36.

    Kohri M. Development of HRP-mediated enzymatic polymerization under heterogeneous conditions for the preparation of functional particles. Polym J. 2014;46:373–80.

  37. 37.

    Hamada K, Kohri M, Taniguchi T, Kishikawa K. In-situ assembly of diblock copolymers onto submicron-sized particles for preparation of core-shell and ellipsoidal particles. Colloids Surf A 2017;512:80–6.

  38. 38.

    Kohri M, Nannichi Y, Kohma H, Abe D, Kojima T, Taniguchi T, et al. Size control of polydopamine nodules formed on polystyrene particles during dopamine polymerization with carboxylic acid-containing compounds for the fabrication of raspberry-like particles. Colloids Surf A. 2014;449:114–20.

  39. 39.

    Kohri M, Nannichi Y, Taniguchi T, Kishikawa K. Biomimetic non-iridescent structural color materials from polydopamine black particles that mimic melanin granules. J Mater Chem C. 2015;3:720–4.

  40. 40.

    Xiao M, Li Y, Allen MC, Deheyn DD, Yue X, Zhao J, et al. Bio-inspired structural colors produced via self-assembly of synthetic melanin nanoparticles. ACS Nano. 2015;9:5454–60.

  41. 41.

    Xiao M, Li Y, Zhao J, Wang Z, Gao M, Gianneschi NC, et al. Stimuli-responsive structurally colored films from bioinspired synthetic melanin nanoparticles. Chem Mater. 2016;28:5516–21.

  42. 42.

    Forster JD, Noh H, Liew SF, Saranathan V, Schreck CF, Yang L, et al. Biomimetic isotropic nanostructures for structural coloration. Adv Mater. 2010;22:2939–44.

  43. 43.

    Takeoka Y, Yoshioka S, Takano A, Arai S, Nueangnoraj K, Nishihara H, et al. Production of colored pigments with amorphous arrays of black and white colloidal particles. Angew Chem Int Ed. 2013;52:7261–5.

  44. 44.

    Takeoka Y. Environment and human friendly colored materials prepared using black and white components. Chem Commun. 2018;54:4905–14.

  45. 45.

    Zhang Y, Dong B, Chen A, Liu X, Shi L, Zi J. Using cuttlefish ink as an additive to produce non-iridescent structural colors of high color visibility. Adv Mater. 2015;27:4719–24.

  46. 46.

    Yang X, Ge D, Wu G, Liao Z, Yang S. Production of structural colors with high contrast and wide viewing angles from assemblies of polypyrrole black coated polystyrene nanoparticles. ACS Appl Mater Interfaces. 2016;8:16289–95.

  47. 47.

    Cho S, Shim TS, Kim JH, Kim DH, Kim SH. Selective coloration of melanin nanospheres through resonant mie scattering. Adv Mater. 2017;29:1700256.

  48. 48.

    Shawkey MD, D’Alba L, Xiao M, Schutte M, Buchholz R. Ontogeny of an iridescent nanostructure composed of hollow melanosomes. J Morphol. 2015;276:378–84.

  49. 49.

    Kawamura A, Kohri M, Morimoto G, Nannichi Y, Taniguchi T, Kishikawa K. Full-color biomimetic photonic materials with iridescent and non-iridescent structural colors. Sci Rep. 2016;6:33984.

  50. 50.

    Prum RO, Torres R, Williamson S, Dyck J. Coherent light scattering by blue feather barbs. Nature. 1998;396:28–9.

  51. 51.

    Takeoka Y. Angle-independent structural coloured amorphous arrays. J Mater Chem. 2012;22:23299–309.

  52. 52.

    Yoshioka S, Takeoka Y. Production of colourful pigments using amorphous arrays of silica particles. ChemPhysChem. 2015;15:2209–15.

  53. 53.

    Kawamura A, Kohri M, Yoshioka S, Taniguchi T, Kishikawa K. Structural color tuning: mixing melanin-like particles with different diameters to create neutral colors. Langmuir. 2017;33:3824–30.

  54. 54.

    Iwasaki T, Tamai Y, Yamamoto M, Taniguchi T, Kishikawa K, Kohri M. Melanin precursor influence on structural colors from artificial melanin particles: polyDOPA, polydopamine, and polynorepinephrine. Langmuir. 2018;34:11814–21.

  55. 55.

    Hong S, Na YS, Choi S, Song IT, Kim WY, Lee H. Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation. Adv Funct Mater. 2012;22:4711–7.

  56. 56.

    Hong S, Kim J, Na YS, Park J, Kim S, Singha K, et al. Poly(norepinephrine): ultrasmooth material-independent surface chemistry and nanodepot for nitric oxide. Angew Chem Int Ed. 2013;52:9187–91.

  57. 57.

    Hong S, Wang Y, Park SY, Lee H. Progressive fuzzy cation-π assembly of biological catecholamines. Sci Adv. 2018;4:eaat7457.

  58. 58.

    Kawamura A, Kohri M, Oku H, Hamada K, Nakagawa K, Taniguchi T, et al. Structural color materials from polydopamine-inorganic hybrid thin films inspired by rock pigeon feathers. Kobunshi Ronbunshu. 2017;74:54–8.

  59. 59.

    Wu TF, Hong JD. Dopamine-melanin nanofilms for biomimetic structural coloration. Biomacromolecules. 2015;16:660–6.

  60. 60.

    Nakamura E, Yoshioka S, Kinoshita S. Structural color of rock dove’s neck feather. J Phys Soc Jpn. 2008;77:124801.

  61. 61.

    Zhang C, Wu BH, Du Y, Ma MQ, Xu ZK. Mussel-inspired polydopamine coatings for large-scale and angle-independent structural colors. J Mater Chem C. 2017;5:3898–902.

  62. 62.

    Kohri M, Tamai Y, Kawamura A, Jido K, Yamamoto M, Taniguchi T, et al. Ellipsoidal artificial melanin particles as building blocks for biomimetic structural coloration. Langmuir. 2019;35:5574–80.

  63. 63.

    Yi B, Shen H. Liquid-immune structural colors with angle-independence inspired from hollow melanosomes. Chem Commun. 2017;53:9234–37.

  64. 64.

    Yi B, Shen H. Facile fabrication of crack-free photonic crystals with enhanced color contrast and low angle dependence. J Mater Chem C. 2017;5:8194–200.

  65. 65.

    Yi B, Shen H. Structurally colored films with superhydrophobicity and wide viewing angles based on bumpy melanin-like particles. Appl Surf Sci. 2018;427:1129–36.

  66. 66.

    Chen G, Yi B, Huang Y, Liang Q, Shen H. Development of bright and low angle dependence structural colors from order-disorder hierarchical photonic structure. Dyes Pigments. 2019;161:464–9.

  67. 67.

    Liu P, Chen J, Zhang Z, Xie Z, Du X, Gu Z. Bio-inspired robust non-iridescent structural color with self-adhesive amorphous colloidal particle arrays. Nanoscale. 2018;10:3673–9.

  68. 68.

    Kohri M, Uradokoro K, Nannichi Y, Kawamura A, Taniguchi T, Kishikawa K. Hairy polydopamine particles as platforms for photonic and magnetic materials. Photonics. 2018;5:36.

  69. 69.

    Kohri M, Yamazaki S, Kawamura A, Taniguchi T, Kishikawa K. Bright structural color films independent of background prepared by the dip-coating of biomimetic melanin-like particles having polydopamine shell layers. Colloids Surf A. 2017;532:564–9.

  70. 70.

    Kohri M, Irie S, Yamazaki S, Kohaku K, Taniguchi T, Kishikawa K. Acid-induced control of surface properties using a catecholic silane coupling reagent. Chem Lett. 2019;48:551–4.

  71. 71.

    Kawamura A, Kohri M, Taniguchi T, Kishikawa K. Surface modification of polydopamine particles via magnetically-responsive surfactants. Trans Mat Res Soc Jpn. 2016;41:301–4.

  72. 72.

    Kohri M, Yanagimoto K, Kohaku K, Shiomoto S, Kobayashi M, Imai A, et al. Magnetically responsive polymer network constructed by poly(acrylic acid) and holmium. Macromolecules. 2018;51:6740–5.

  73. 73.

    Kohri M, Yanagimoto K, Kawamura A, Hamada K, Imai Y, Watanabe T, et al. Polydopamine-based 3D colloidal photonic materials: structural color balls and fibers from melanin-like particles with polydopamine shell layers. ACS Appl Mater Interfaces. 2018;10:7640–8.

  74. 74.

    Xiao M, Hu Z, Wang Z, Li Y, Tormo AD, Le Thomas N, et al. Bioinspired bright noniridescent photonic melanin supraballs. Sci Adv. 2017;3:e1701151.

Download references

Acknowledgements

These studies were financially supported by JSPS KAKENHI (grant numbers 15H01593, 16K14072, and 17H03110), the Noguchi Institute, the JGC-S Scholarship Foundation, the Murata Science Foundation, the Hatayama Foundation, the Konica Minolta Science and Technology Foundation, the Iketani Science and Technology Foundation, the Toyo Gosei Memorial Foundation, and a Chiba University Venture Business Laboratory project. I am deeply grateful to the collaborators and students listed in the papers cited.

Author information

Correspondence to Michinari Kohri.

Ethics declarations

Conflict of interest

The author declares he has have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kohri, M. Artificial melanin particles: new building blocks for biomimetic structural coloration. Polym J 51, 1127–1135 (2019). https://doi.org/10.1038/s41428-019-0231-2

Download citation

Further reading