Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Self-charging photo-power cell based on a novel polymer nanocomposite film with high energy density and durability

Abstract

The present work emphases the fabrication of a simple, solid-state, and cost-effective multifaceted device called a “self-charging photo power bank” based on an in situ-synthesized MgO2 NP-impregnated electroactive and high dielectric poly(vinylidene fluoride) thin film composite as its active material. Positioned under visible-light illumination of 110 mW/cm2 and in the absence of any sort of external bias, our optimized multilayered device can self-charge to a voltage of 1170 mV in just 24 s. An excitingly high energy density of 240 mW h/m2 and a remarkable charge density of 1350 C/m2 along with the excellent energy-retaining power of the device for a considerable period of time illustrate its potential as an efficient power bank. The device is used for 30 consecutive days to prove its commendable long-term cycling stability. Three blue, commercial LEDs and a digital table clock are successfully powered by our device. Our fabricated device portends an innovative approach for self-generation and simultaneous storage of electrical energy, making it an efficacious nascent aspirant in the realms of energy harvesting and storage, which can undoubtedly meet the energy necessities in the imminent future.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Martins P, Lopes AC, Lanceros-Mendez S. Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog Polym Sci. 2014;39:683–706.

    Article  CAS  Google Scholar 

  2. Martins P, Nunes JS, Hungerford G, Miranda D, Ferreira A, Sencadas V, et al. Local variation of the dielectric properties of poly(vinylidene fluoride) during the [alpha]- to [beta]-phase transformation. Phys Lett A. 2009;373:177–80.

    Article  CAS  Google Scholar 

  3. Martins P, Caparros C, Goncalves R, Martins PM, Benelmekki M, Botelho G, et al. Role of nanoparticle surface charge on the nucleation of the electroactive β-poly(vinylidene fluoride) nanocomposites for sensor and actuator applications. J Phys Chem C. 2012;116:15790–4.

    Article  CAS  Google Scholar 

  4. Ribeiro C, Sencadas V, Gomez Ribelles JL, Lanceros-Méndez S. Influence of processing conditions on polymorphism and nanofiber morphology of electroactive poly(vinylidene fluoride) electrospun membranes. Soft Mater. 2010;8:274–87.

    Article  CAS  Google Scholar 

  5. Sencadas V, Gregorio Filho R, Lanceros-Méndez S. Processing and characterization of a novel nonporous poly(vinilidene fluoride) films in the β phase. J Non-Cryst Solids. 2006;352:2226–9.

    Article  CAS  Google Scholar 

  6. Lim SH, Rastogi AC, Desu SB. Electrical properties of metal-ferroelectric-insulator-semiconductor structures based on ferroelectric polyvinylidene fluoride copolymer film gate for nonvolatile random-access memory application. J Appl Phys. 2004;96:5673–82.

    Article  CAS  Google Scholar 

  7. Hoque NA, Thakur P, Roy S, Kool A, Bagchi B, Biswas P, et al. Er3 +/Fe3+ stimulated electroactive, visible light emitting, and high dielectric flexible PVDF film based piezoelectric nanogenerators: a simple and superior self-powered energy harvester with remarkable power density. ACS Appl Mater Interfaces. 2017;9:23048–59.

    Article  CAS  PubMed  Google Scholar 

  8. Roy S, Thakur P, Hoque NA, Bagchi B, Sepay N, Khatun F, et al. Electroactive and high dielectric folic acid/PVDF composite film rooted simplistic organic photovoltaic self-charging energy storage cell with superior energy density and storage capability. ACS Appl Mater Interfaces. 2017;9:24198–209.

    Article  CAS  PubMed  Google Scholar 

  9. Li Q, Wang Q. Ferroelectric polymers and their energy-related applications. Macromol Chem Phys. 2016;217:1228–44.

    Article  CAS  Google Scholar 

  10. Kim GH, Hong SM, Seo Y. Piezoelectric properties of poly(vinylidene fluoride) and carbon nanotube blends: β-phase development. Phys Chem Chem Phys. 2009;11:10506–12.

    Article  CAS  PubMed  Google Scholar 

  11. Andrew JS, Clarke DR. Effect of electrospinning on the ferroelectric phase content of polyvinylidene difluoride fibers. Langmuir. 2008;24:670–2.

    Article  CAS  PubMed  Google Scholar 

  12. Das-Gupta DK, Doughty K. Corona charging and the piezoelectric effect in polyvinylidene fluoride. J Appl Phys. 1978;49:4601–3.

    Article  CAS  Google Scholar 

  13. Bao SP, Liang GD, Tjong SC. Effect of mechanical stretching on electrical conductivity and positive temperature coefficient characteristics of poly(vinylidene fluoride)/carbon nanofiber composites prepared by non-solvent precipitation. Carbon. 2011;49:1758–68.

    Article  CAS  Google Scholar 

  14. Mandal D, Henkel K, Schmeißer D. The electroactive β-phase formation in poly(vinylidene fluoride) by gold nanoparticles doping. Mater Lett. 2012;73:123–125.

    Article  CAS  Google Scholar 

  15. Xu HP, Dang ZM. Electrical property and microstructure analysis of poly(vinylidene fluoride)-based composites with different conducting fillers. Chem Phys Lett. 2007;438:196–202.

    Article  CAS  Google Scholar 

  16. Thakur P, Kool A, Bagchi B, Das S, Nandy P. Effect of in situ synthesized Fe2O3 and Co3O4 nanoparticles on electroactive β phase crystallization and dielectric properties of poly(vinylidene fluoride) thin films. Phys Chem Chem Phys. 2015;17:1368–78.

    Article  CAS  PubMed  Google Scholar 

  17. Wu W, Huang X, Li S, Jiang P, Toshikatsu T. Novel three-dimensional zinc oxide superstructures for high dielectric constant polymer composites capable of withstanding high electric field. J Phys Chem C. 2012;116:24887–95.

    Article  CAS  Google Scholar 

  18. Deepa KS, Gopika MS, James J. Influence of matrix conductivity and coulomb blockade effect on the percolation threshold of insulator–conductor composites. Compos Sci Technol. 2013;78:18–23.

    Article  CAS  Google Scholar 

  19. Priya L, Jog JP. Polymorphism in intercalated poly(vinylidene fluoride)/clay nanocomposites. J Appl Polym Sci. 2003;89:2036–40.

    Article  CAS  Google Scholar 

  20. Thakur P, Kool A, Bagchi B, Das S, Nandy P. Enhancement of β phase crystallization and dielectric behavior of kaolinite/halloysite modified poly(vinylidenefluoride) thin films. Appl Clay Sci. 2014;99:149–59.

    Article  CAS  Google Scholar 

  21. Roy S, Thakur P, Hoque NA, Bagchi B, Das S. Enhanced electroactive β-phase nucleation and dielectric properties of PVdF-HFP thin films influenced by montmorillonite and Ni(OH)2 nanoparticle modified montmorillonite. RSC Adv. 2016;6:21881–94.

    Article  CAS  Google Scholar 

  22. Yuan J-K, Yao S-H, Dang Z-M, Sylvestre A, Genestoux M, Bai J. Giant dielectric permittivity nanocomposites: realizing true potential of pristine carbon nanotubes in polyvinylidene fluoride matrix through an enhanced interfacial interaction. J Phys Chem C. 2011;115:5515–21.

    Article  CAS  Google Scholar 

  23. Zhou T, Zha JW, Cui RY, Fan BH, Yuan JK, Dang ZM. Improving dielectric properties of BaTiO3/ferroelectric polymer composites by employing surface hydroxylated BaTiO3 nanoparticles. ACS Appl Mater Interfaces. 2011;3:2184–8.

    Article  CAS  PubMed  Google Scholar 

  24. Martins P, Costa CM, Benelmekki M, Botelho G, Lanceros-Mendez S. On the origin of the electroactive poly(vinylidene fluoride) β-phase nucleation by ferrite nanoparticles via surface electrostatic interaction. CrystEngComm 2012;14:2807–11.

    Article  CAS  Google Scholar 

  25. Eswaraiah V, Sankaranarayanan V, Ramaprabhu S. Functionalized graphene-PVDF foam composites for emi shielding. Macromol Mater Eng. 2011;296:894–8.

    Article  CAS  Google Scholar 

  26. Thakur P, Kool A, Bagchi B, Hoque NA, Das S, Nandy P. In situ synthesis of Ni(OH)2 nanobelts modified electroactive poly(vinylidene fluoride) thin films: remarkable improvement in dielectric properties. Phys Chem Chem Phys. 2015;17:13082–91.

    Article  CAS  PubMed  Google Scholar 

  27. Chu S, Majumdir A. Opportunities and challenges for a sustainable energy future. Nature 2012;488:294–303.

    Article  CAS  PubMed  Google Scholar 

  28. Wang H, Dai H. Strongly coupled inorganic–nano-carbon hybrid materials for energy Storage. Chem Soc Rev. 2013;42:3088–113.

    Article  CAS  PubMed  Google Scholar 

  29. Rosa EA, Dietz T. Human drivers of national greenhouse-gas emissions. Nat Clim Change. 2012;2:581–6.

    Article  CAS  Google Scholar 

  30. Khatun F, Hoque NA, Thakur P, Sepay N, Roy S, Bagchi B, et al. 4′-chlorochalcone-assisted electroactive polyvinylidene fluoride film-based energy-storage system capable of self-charging under light. Energy Technol. 2017;5:1–12.

    Article  CAS  Google Scholar 

  31. Lo C-W, Li C, Jiang H. Direct solar energy conversion and storage through coupling between photoelectrochemical and ferroelectric effects. AIP Adv. 2011;1:042104.

    Article  CAS  Google Scholar 

  32. Xin X, He M, Han W, Jung J, Lin Z. Low-cost copper zinc tin sulfide counter electrodes for high efficiency dye-sensitized solar cells. Angew Chem. 2011;50:11739–42.

    Article  CAS  Google Scholar 

  33. Wu J, Lan Z, Hao S, Li P, Lin J, Huang M, et al. Progress on the electrolytes for dye-sensitized solar cells. Pure Appl Chem. 2008;80:2241–58.

    Article  CAS  Google Scholar 

  34. Cha SI, Kim Y, Hwang KH, Shin Y-J, Seo SH, Lee DY. Dye-sensitized solar cells on glass paper: Tco-free highly bendable dye-sensitized solar cells inspired by the traditional korean door structure. Energy Environ Sci. 2012;5:6071.

    Article  CAS  Google Scholar 

  35. Chen T, Qiu L, Yang Z, Cai Z, Ren J, Li H, et al. An integrated “energy wire” for both photoelectric conversion and energy storage. Angew Chem. 2012;5:11977–80.

    Article  CAS  Google Scholar 

  36. Chien CT, Hiralal P, Wang DY, Huang I, Chen CC, Chen CW, et al. Graphene-based integrated photovoltaic energy harvesting/storage device. Small. 2015;11:2929–37.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang M, Zhou QQ, Chen J, Yu XW, Huang L, Li YR, et al. An ultrahigh-rate electrochemical capacitor based on solution-processed highly conductive PEDOT: PSS films for ac line-filtering. Energy Environ Sci. 2016;9:2005–10.

    Article  CAS  Google Scholar 

  38. Xu J, Chen Y, Dai L. Efficiently photo-charging lithium-ion battery by perovskite solar cell. Nat Commun. 2015;6:1–7.

    CAS  Google Scholar 

  39. Murakami TN, Kawashima N, Miyasaka TA. High-voltage dye-sensitized photocapacitor of a three-electrode system. Chem Commun. 2005;26:3346–8.

    Article  CAS  Google Scholar 

  40. Zhou F, Ren Z, Zhao Y, Shen X, Wang A, Li YY, et al. Perovskite photovoltachromic supercapacitor with all-transparent electrodes. ACS Nano. 2016;10:5900–8.

    Article  CAS  PubMed  Google Scholar 

  41. Thakur P, Kool A, Hoque NA, Bagchi B, Khatun F, Biswas P, et al. Superior performances of in situ synthesized ZNO/PVDF thin film based self-poled piezoelectric nanogenerator and self-charged photo-power bank with high durability. Nano Energy. 2018;44:456–67.

    Article  CAS  Google Scholar 

  42. Wee G, Salim T, Lam YM, Mhaisalkar SG, Srinivasan M. Printable photo-supercapacitor using single-walled carbon nanotubes. Energy Environ Sci. 2011;4:413–6.

    Article  CAS  Google Scholar 

  43. Dakin TW. Conduction and polarization mechanisms and trends in dielectrics. IEEE Electr Insul Mag. 2006;22:11–28.

    Article  Google Scholar 

  44. Li Y, Huang X, Hu Z, Jiang P, Li S, Tanaka T. Large dielectric constant and high thermal conductivity in poly(vinylidene fluoride)/barium titanate/silicon carbide three-phase nanocomposites. ACS Appl Mater Interfaces. 2011;3:4396–403.

    Article  CAS  PubMed  Google Scholar 

  45. Lopes AC, Costa CM, Sabater i Serra R, Neves IC, Gomez Ribelles JL, Lanceros-Méndez S. Dielectric relaxation, ac conductivity and electric modulus in poly(vinylidenefluoride)/nay zeolite composites. Solid State Ion. 2013;235:42–50.

    Article  CAS  Google Scholar 

  46. Wang J-W, Wang Y, Wang F, Li S-Q, Xiao J, Shen Q-D. A large enhancement in dielectric properties of poly(vinylidene fluoride) based all-organic nanocomposite. Polymer. 2009;50:679–84.

    Article  CAS  Google Scholar 

  47. Yin Y, Feng K, Liu C, Fan SA. Polymer supercapacitor capable of self-charging under light illumination. J Phys Chem C. 2015;119:8488–849.

    Article  CAS  Google Scholar 

  48. Shi C, Dong H, Zhu R, Li H, Sun Y, Xu D, et al. An “all-in-one” mesh-typed integrated energy unit for both photoelectric conversion and energy storage in uniform electrochemical system. Nano Energy. 2015;13:670–8.

    Article  CAS  Google Scholar 

  49. Hou K, Tian B, Li F, Bian Z, Zhao D, Huang C. Highly crystallized mesoporous TiO2 films and their applications in dye sensitized solar cells. J Mater Chem. 2005;15:2414–20.

    Article  CAS  Google Scholar 

  50. Mohapatra SK, Kondamudi N, Banerjee S, Misra M. Functionalization of self-organized TiO2 nanotubes with Pd nanoparticles for photocatalytic decomposition of dyes under solar light illumination. Langmuir. 2008;24:11276–81.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang X, Huang X, Li C, Jiang H. Dye-sensitized solar cell with energy storage function through PVDF/ZNO nanocomposite counter electrode. Adv Mater. 2013;25:4093–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Biswas P, Hoque NA, Thakur P, Saikh MdM, Roy S, Khatun F, et al. Highly efficient and durable piezoelectric nanogenerator and photo-power cell based on CTAB modified montmorillonite incorporated PVDF film. ACS Sustain Chem Eng. 2019;7:4801–13.

    Article  CAS  Google Scholar 

  53. Khatun F, Thakur P, Kool A, Roy S, Hoque NA, Biswas P, et al. Photo-rechargeable organic–inorganic dye-integrated polymeric power cell with superior performance and durability. Langmuir. https://doi.org/10.1021/acs.langmuir.9b00622.

  54. Skunik-Nuckowska M, Grzejszczyk K, Kulesza PJ, Yang L, Vlachopoulos N, Häggman L, et al. Integration of solid-state dye-sensitized solar cell with metal oxide charge storage material into photoelectrochemical capacitor. J Power Sources. 2013;23:491–99.

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge and convey their heartfelt appreciation for the monetary aid provided by the University Grants Commission (UGC) Govt. of India that allowed this research work to be conducted.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pradip Thakur or Sukhen Das.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roy, S., Thakur, P., Hoque, N.A. et al. Self-charging photo-power cell based on a novel polymer nanocomposite film with high energy density and durability. Polym J 51, 1197–1209 (2019). https://doi.org/10.1038/s41428-019-0230-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-019-0230-3

Search

Quick links