Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Site-selective anisotropic modification of conductive objects by bipolar electropolymerization


This review focuses on recent developments in electropolymerization that use bipolar electrochemistry. A bipolar electrode (BPE), which is driven under the influence of an electric field, can be used for electrochemical reactions with interesting features such as wireless and site-selective reactions. In this context, bipolar electropolymerization is a powerful method for wirelessly achieving site-selective anisotropic modification of BPEs with conducting polymers. In addition, alternating current (AC) bipolar electropolymerization was developed to induce conducting polymer fibers from the terminals of BPEs that propagate parallel to the direction of the electric field. Bipolar electropolymerization is a class of next-generation electropolymerization for obtaining hybrid materials of conducting polymers and conductive objects.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. Funt BL. Electrochemical polymerization. Organic Electrochemistry. 3rd edition. New York: Marcel Dekker; 1990. Chapter 32.

    Google Scholar 

  2. Heinze J. Electrochemistry of conducting polymers. Organic Electrochemistry. 5th edition. Boca Raton: CRC Press; 2016. Chapter 41.

    Google Scholar 

  3. Fuchigami T, Inagi S. Organic electrosynthesis. Fundamentals and Applications of Organic Electrochemistry: Synthesis, Materials, Devices. Hoboken: Wiley; 2014. Chapter 5.

    Chapter  Google Scholar 

  4. Inzelt G. Conducting Polymers—A New Era of Electrochemistry. Heidelberg: Springer; 2008.

    Google Scholar 

  5. Heinze J, Frontana-Uribe BA, Ludwigs S. Electrochemistry of conducting polymers–persistent models and new concepts. Chem Rev. 2010;110:4724–71.

    Article  CAS  Google Scholar 

  6. Beaujuge PM, Reynolds JR. Color control in π-conjugated organic polymers for use in electrochromic devices. Chem Rev. 2010;110:268–310.

    Article  CAS  Google Scholar 

  7. Fosdick SE, Knust KN, Scida K, Crooks RM. Bipolar electrochemistry. Angew Chem Int Ed. 2013;52:10438–56.

    Article  CAS  Google Scholar 

  8. Atobe M. Fundamental principles of organic electrochemistry: fundamental aspects of electrochemistry dealing with organic molecules. Fundamentals and Applications of Organic Electrochemistry: Synthesis, Materials, Devices. Hoboken: Wiley; 2014. Chapter 1.

    Google Scholar 

  9. Crooks RM. Principles of bipolar electrochemistry. ChemElectroChem. 2016;3:357–9.

    Article  CAS  Google Scholar 

  10. Goodridge F, King CJH, Wright AR. Performance studies on a bipolar fluidised bed electrode. Electrochim Acta. 1977;22:1087–91.

    Article  CAS  Google Scholar 

  11. Aust, N. Organic electrochemistry, industrial aspects. Encycl Appl Electrochem. 2014; 1392–7.

  12. Kuhn A, Crooks RM, Inagi S. A compelling case for bipolar electrochemistry. ChemElectroChem. 2016;3:351–2.

    Article  CAS  Google Scholar 

  13. Chow K–F, Mavré F, Crooks RM. Wireless electrochemical DNA microarray sensor. J Am Chem Soc. 2008;130:7544–5.

    Article  CAS  Google Scholar 

  14. Loget G, Zigah D, Bouffier L, Sojic N, Kuhn A. Bipolar electrochemistry: from materials science to motion and beyond. Acc Chem Res. 2013;46:2513–23.

    Article  CAS  Google Scholar 

  15. Ulrich C, Andersson O, Nyholm L, Björefors F. Formation of molecular gradients on bipolar electrodes. Angew Chem Int Ed. 2008;47:3034–6.

    Article  CAS  Google Scholar 

  16. Inagi S. Fabrication of gradient polymer surfaces using bipolar electrochemistry. Polym J. 2016;48:39–44.

    Article  CAS  Google Scholar 

  17. Koizumi Y, Nishiyama H, Tomita I, Inagi S. Templated bipolar electrolysis for fabrication of robust Co and Pt nanorods. Chem Commun. 2018;54:10475–8.

    Article  CAS  Google Scholar 

  18. Babu S, Ndungu P, Bradley J-C, Rossi MP, Gogotsi Y. Guiding water into carbon nanopipes with the aid of bipolar electrochemistry. Microfluid Nanofluid. 2005;1:284–8.

    Article  CAS  Google Scholar 

  19. Rossi MP, Ye H, Gogotsi Y, Babu S, Ndungu P, Bradley J-C. Environmental scanning electron microscopy study of water in carbon nanopipes. Nano Lett. 2004;4:989–93.

    Article  CAS  Google Scholar 

  20. Warakulwit C, Nguyen T, Majimel J, Delville M, Lapeyre V, Garrigue P, Ravaine V, Limtrakul J, Kuhn A. Disymmetric carbon nanotubes by bipolar electrochemistry. Nano Lett. 2008;8:500–4.

    Article  CAS  Google Scholar 

  21. Loget G, Lapeyre V, Garrigue P, Warakulwit C, Limtrakul J, Delville M–H, Kuhn A. Versatile procedure for synthesis of Janus-type carbon tubes. Chem Mater. 2011;23:2595–9.

    Article  CAS  Google Scholar 

  22. Ongaro M, Gambirasi A, Favaro M, Kuhn A, Ugo P. Asymmetrical modification of carbon microfibers by bipolar electrochemistry in acetonitrile. Electrochim Acta. 2014;116:421–8.

    Article  CAS  Google Scholar 

  23. Koizumi Y, Shida N, Ohira M, Nishiyama H, Tomita I, Inagi S. Electropolymerization on wireless electrodes towards conducting polymer microfibre networks. Nat Commun. 2016;7:10404.

    Article  CAS  Google Scholar 

  24. Ohira M, Koizumi Y, Nishiyama H, Tomita I, Inagi I. Synthesis of linear PEDOT fibers by AC-bipolar electropolymerization in a micro-space. Polym J. 2017;49:163–7.

    Article  CAS  Google Scholar 

  25. Koizumi Y, Ohira M, Watanabe T, Nishiyama H, Tomita I, Inagi S. Synthesis of poly(3,4-ethylenedioxythiophene)-platinum and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) hybrid fibers by alternating current bipolar electropolymerization. Langmuir. 2018;34:7598–603.

    Article  CAS  Google Scholar 

  26. Watanabe T, Ohira M, Koizumi Y, Nishiyama H, Tomita I, Inagi S. In-plane growth of poly(3,4-ethylenedioxythiophene) films on a substrate surface by bipolar electropolymerization. ACS Macro Lett. 2018;7:551–5.

    Article  CAS  Google Scholar 

Download references


This research was supported by a Kakenhi Grant-in-Aid (No. JP17H03095) from the Japan Society for the Promotion of Science (JSPS), the Murata Science Foundation, and Casio Science Promotion Foundation.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Shinsuke Inagi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inagi, S. Site-selective anisotropic modification of conductive objects by bipolar electropolymerization. Polym J 51, 975–981 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links