Water-induced surface reorganization of bioscaffolds composed of an amphiphilic hyperbranched polymer

Abstract

The ability to freely control the surface of bioscaffolds in a water environment is desirable to regulate cellular behaviors in vitro. Herein, we study the surface aggregation states of scaffold films composed of a multifunctional hyperbranched polymer (HBP) with perfluorohexylethyl, carboxy, and cyano groups that was prepared using a spin-coating method. Static contact angle measurements in conjunction with X-ray photoelectron spectroscopy revealed that perfluorohexylethyl groups were segregated at the surface of the HBP film in air, and these findings were more remarkable for the film treated with thermal annealing. Once the HBP film contacted water, HBP chains reorganized at the surface to minimize the free energy, resulting in the formation of a relatively hydrophilic surface. This surface reorganization was discernably faster and more remarkable for the non-annealed HBP film than for the annealed film. As fundamental characteristics of a cellular scaffold, protein adsorption, in addition to the initial adhesion and proliferation of fibroblasts, was examined using microscopy. The amount of fibronectin adsorbed depended on the presence of thermal annealing during the scaffold preparation process. A relatively larger amount of fibronectin adsorbed to the non-annealed HBP film promoted the initial adhesion and subsequent proliferation of fibroblasts.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Shastri VP, Lendlein A. Materials in regenerative medicine. Adv Mater. 2009;21:3231–4.

    CAS  Article  Google Scholar 

  2. 2.

    Xu W, Wang Z, Li T, Wang L, Zhang W, Liang Y, et al. Membranes based on carboxymethyl chitin as potential scaffolds for corneal endothelial transplantation. Polym J. 2017;49:789–98.

    CAS  Article  Google Scholar 

  3. 3.

    Kambe Y, Tokushige T, Mahara A, Iwasaki Y, Yamaoka T. Cardiac differentiation of induced pluripotent stem cells on elastin-like protein-based hydrogels presenting a single-cell adhesion sequence. Polym J. 2019;51:97–105.

    CAS  Article  Google Scholar 

  4. 4.

    Ratner BD, Bryant SJ. Biomaterials: where we have been and where we are going. Annu Rev Biomed Eng. 2004;6:41–75.

    CAS  Article  Google Scholar 

  5. 5.

    Alves NM, Pashkuleva I, Reis RL, Mano JF. Controlling cell behavior through the design of polymer surfaces. Small. 2010;6:2208–20.

    CAS  Article  Google Scholar 

  6. 6.

    Yao X, Peng R, Ding J. Cell-material Interactions revealed via material techniques of surface patterning. Adv Mater. 2013;25:5257–86.

    CAS  Article  Google Scholar 

  7. 7.

    Tamada Y, Ikada Y. Fibroblast growth on polymer surfaces and biosynthesis of collagen. J Biomed Mater Res. 1994;28:783–9.

    CAS  Article  Google Scholar 

  8. 8.

    Benoit DSW, Schwartz MP, Durney AR, Anseth KS. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nat Mater. 2008;7:816–823.

    CAS  Article  Google Scholar 

  9. 9.

    Gentleman MM, Gentleman E. The role of surface free energy in osteoblast–biomaterial interactions. Int Mater Rev. 2014;59:417–29.

    CAS  Article  Google Scholar 

  10. 10.

    Park A, Cima LG. In vitro cell response to differences in poly-L-lactide crystallinity. J Biomed Mater Res. 1996;31:117–30.

    CAS  Article  Google Scholar 

  11. 11.

    Simon CG Jr., Eidelman N, Kennedy SB, Sehgal A, Khatri CA, Washburn NR. Combinatorial screening of cell proliferation on poly(L-lactic acid)/poly(D,L-lactic acid) blends. Biomaterials. 2005;26:6906–15.

    CAS  Article  Google Scholar 

  12. 12.

    Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, et al. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater. 2007;6:997–1003.

    CAS  Article  Google Scholar 

  13. 13.

    Greco F, Fujie T, Ricotti L, Taccola S, Mazzolai B, Mattoli V. Microwrinkled conducting polymer interface for anisotropic multicellular alignment. ACS Appl Mater Interfaces. 2013;5:573–84.

    CAS  Article  Google Scholar 

  14. 14.

    Viswanathan P, Ondeck MG, Chirasatitsin S, Ngamkham K, Reilly GC, Engler AJ, et al. 3D surface topology guides stem cell adhesion and differentiation. Biomaterials. 2015;52:140–7.

    CAS  Article  Google Scholar 

  15. 15.

    Discher DE, Janmey P, Wang YL. Tissue cells feel and respond to the stiffness of their substrate. Science. 2005;310:1139–43.

    CAS  Article  Google Scholar 

  16. 16.

    Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–89.

    CAS  Article  Google Scholar 

  17. 17.

    Shimomura S, Matsuno H, Tanaka K. Effect of mechanical instability of polymer scaffolds on cell adhesion. Langmuir. 2013;29:11087–92.

    CAS  Article  Google Scholar 

  18. 18.

    Shimomura S, Matsuno H, Sanada K, Tanaka K. Cell adhesion on glassy scaffolds with a different mechanical response. J Mater Chem B. 2017;5:714–9.

    CAS  Article  Google Scholar 

  19. 19.

    Matsuno H, Irie S, Hirata T, Matsuyama R, Oda Y, Masunaga H, et al. Heterogeneous adhesion of cells on polymer surfaces with underlying amorphous/crystalline phases. J Mater Chem B. 2018;6:903–7.

    CAS  Article  Google Scholar 

  20. 20.

    Shimomura S, Matsuno H, Kinoshita Y, Fujimura S, Tanaka K. Cellular behaviors on polymeric scaffolds with 2D-patterned mechanical properties. Polym J. 2018;50:737–43.

    CAS  Article  Google Scholar 

  21. 21.

    Iwamatsu K, Uto K, Takeuchi Y, Hoshi T, Aoyagi T. Preparation of temperature-responsive, cationized, poly(ε-caprolactone)-based, cross-linked materials by a macromonomer design and positive charge control on the surface. Polym J. 2018;50:447–54.

    CAS  Article  Google Scholar 

  22. 22.

    Tanaka K, Fujii Y, Atarashi H, Akabori K, Hino M, Nagamura T. Nonsolvents cause swelling at the interface with poly(methyl methacrylate) films. Langmuir. 2008;24:296–301.

    CAS  Article  Google Scholar 

  23. 23.

    Atarashi H, Hirai T, Hori K, Hino M, Morita H, Serizawa T, et al. Uptake of water in non-annealed poly(methyl methacrylate) thin films. RSC Adv. 2013;3:3516–9.

    CAS  Article  Google Scholar 

  24. 24.

    Tateishi Y, Kai N, Noguchi H, Uosaki K, Nagamura T, Tanaka K. Local conformation of poly(methyl methacrylate) at nitrogen and water interfaces. Polym Chem. 2010;1:303–11.

    CAS  Article  Google Scholar 

  25. 25.

    Hirata T, Matsuno H, Kawaguchi D, Yamada NL, Tanaka M, Tanaka K. Effect of interfacial structure on bioinert properties of poly(2-methoxyethyl acrylate)/poly(methyl methacrylate) blend films in water. Phys Chem Chem Phys. 2015;17:17399–405.

    CAS  Article  Google Scholar 

  26. 26.

    Matsuno H, Tsukamoto R, Shimomura S, Hirai T, Oda Y, Tanaka K. Platelet-adhesion behavior synchronized with surface rearrangement in a film of poly(methyl methacrylate) terminated with elemental blocks. Polym J. 2016;48:413–9.

    CAS  Article  Google Scholar 

  27. 27.

    Yamamoto K, Hirai T, Oda Y, Kawaguchi D, Matsuno H, Tanaka K. A polymer interfacial modifier synthesized by living anionic polymerization: incorporation of inorganic blocks to chain ends. Macromol Chem Phys. 2017;218:1600473.

    Article  Google Scholar 

  28. 28.

    Fréchet JMJ. Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy. Science. 1994;263:1710–5.

    Article  Google Scholar 

  29. 29.

    Voit BI, Lederer A. Hyperbranched and highly branched polymer architectures – synthetic strategies and major characterization aspects. Chem Rev. 2009;109:5924–73.

    CAS  Article  Google Scholar 

  30. 30.

    Bandyopadhyay A, Sengupta S, Das T. Hyperbranched polymers for biomedical applications, springer series on polymer and composite materials. Springer: Singapore; 2017.

  31. 31.

    Navarro L, Ceaglio N, Rintoul I. Structure and properties of biocompatible poly(glycerol adipate) elastomers modified with ethylene glycol. Polym J. 2017;49:625–32.

    CAS  Article  Google Scholar 

  32. 32.

    Yang Y, Cai Z, Huang Z, Tang X, Zhang X. Antimicrobial cationic polymers: from structural design to functional control. Polym J. 2018;50:33–44.

    CAS  Article  Google Scholar 

  33. 33.

    Yuasa S, Imoto H, Naka K. Synthesis and properties of hyperbranched polymers by polymerization of an AB3-type incompletely condensed cage silsesquioxane (IC-POSS) monomer. Polym J. 2018;50:879–87.

    CAS  Article  Google Scholar 

  34. 34.

    Atarashi H, Ariura F, Akabori K, Ozawa M, Tanaka K, Nagamura T. Interfacial segregation of hyper-branched polystyrene in mixture of linear component. Trans Mater Res Soc Jpn. 2007;32:231–4.

    CAS  Google Scholar 

  35. 35.

    Hirai T, Liu H, Ohta Y, Yokozawa T, Tanaka K. Surface segregation of well-defined N-substituted hyperbranched polyamides in liner polymer matrix. Chem Lett. 2011;40:366–7.

    CAS  Article  Google Scholar 

  36. 36.

    Haraguchi M, Hirai T, Ozawa M, Miyaji K, Tanaka K. Hydrophobic acrylic hard coating by surface segregation of hyper-branched polymers. Appl Surf Sci. 2013;266:235–8.

    CAS  Article  Google Scholar 

  37. 37.

    Tanaka K, Hirai T, Shimafuji K, Haraguchi M, Matsuyama M. PCT International Applications. WO 2013191294A1 (2013).

  38. 38.

    Totani M, Liu L, Matsuno H, Tanaka K. Design of a star-like hyperbranched polymer having hydrophilic arms for anti-biofouling coating. J Mater Chem B. 2019;7:1045–9.

    CAS  Article  Google Scholar 

  39. 39.

    Akdemir ZS, Kayaman-Apohan N, Kahraman MV, Kuruca SE, Gungor A, Karadenizli S. Preparation of biocompatible, UV-cured fumarated poly(ether-ester)-based tissue-engineering hydrogels. J Biomater Sci Polym Ed. 2011;22:857–72.

    CAS  Article  Google Scholar 

  40. 40.

    Das B, Chattopadhyay P, Mandal M, Voit B, Karak N. Bio-based biodegradable and biocompatible hyperbranched polyurethane: a scaffold for tissue engineering. Macromol Biosci. 2013;13:126–39.

    CAS  Article  Google Scholar 

  41. 41.

    Dong Y, Saeed AO, Hassan W, Keigher C, Zheng Y, Tai H, et al. “One-step” preparation of thiol-ene clickable PEG-based thermoresponsive hyperbranched copolymer for in situ crosslinking hybrid hydrogel. Macromol Rapid Commun. 2012;33:120–6.

    Article  Google Scholar 

  42. 42.

    Kennedy R, Hassan WU, Tochwin A, Zhao T, Dong Y, Wang Q, et al. In situ formed hybrid hydrogels from peg based multifunctional hyperbranched copolymers: a RAFT approach. Polym Chem. 2014;5:1838–42.

    CAS  Article  Google Scholar 

  43. 43.

    Brandrup J, Immergut EH, Grulke EA. Polymer handbook, 4th ed., Wiley-Interscience: Hoboken, NJ; 2003.

  44. 44.

    Kassis CM, Steehler JK, Betts DE, Guan Z, Romack TJ, DeSimone JM, et al. XPS studies of fluorinated acrylate polymers and block copolymers with polystyrene. Macromolecules. 1996;29:3247–54.

    CAS  Article  Google Scholar 

  45. 45.

    Hynes, RO. Fibronectins, springer series in molecular and cell biology. Springer-Verlag: New York, NY; 1990.

  46. 46.

    Curtis SG, Forrester JV, McInnes C, Lawrie F. Adhesion of cells to polystyrene surfaces. J Cell Biol. 1983;97:1500–6.

    CAS  Article  Google Scholar 

  47. 47.

    Tamada Y, Ikada Y. Cell adhesion to plasma-treated polymer surfaces. Polymer. 1993;34:2208–12.

    CAS  Article  Google Scholar 

  48. 48.

    Lerman MJ, Lembong J, Muramoto S, Gillen G, Fisher JP. The evolution of polystyrene as a cell culture material. Tissue Eng B. 2018;24:359–72.

    CAS  Article  Google Scholar 

  49. 49.

    Leclerc E, David B, Griscom L, Lepioufle B, Fujii T, Layrolle P, et al. Study of osteoblastic cells in a microfluidic environment. Biomaterials. 2006;27:586–95.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Nissan Chemical Corp. for kindly providing HBP. This research was partially supported by a JSPS KAKENHI Grant-in-Aid for Scientific Research (A) (Grant No. JP15H02183) (K.T.), Grant-in-Aid for Scientific Research (B) (Grant No. JP18H02037) (H.M.), and Early-Career Scientists (Grant No. JP18K16990) (M.T.). We are also grateful for support from JST-Mirai Program (JPMJMI18A2) and CSTI Impulsing Paradigm Change through Disruptive Technologies (ImPACT) Program (K.T.).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Hisao Matsuno or Keiji Tanaka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Matsuno, H., Totani, M., Yamamoto, A. et al. Water-induced surface reorganization of bioscaffolds composed of an amphiphilic hyperbranched polymer. Polym J 51, 1045–1053 (2019). https://doi.org/10.1038/s41428-019-0212-5

Download citation

Further reading