The dawn of polymer chemistry based on multicomponent reactions

Abstract

This focus review documents the developments in polymer synthesis that involve multicomponent reactions (MCRs) and related sequential reaction systems. Postpolymerization modification and step-growth polymerization reactions based on MCRs and sequential reactions such as the Kabachnik–Fields three-component reaction (KF-3CR) are described.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Scheme 1
Scheme 2
Fig. 1
Fig. 2

References

  1. 1.

    Blasco E, Sims MB, Goldmann AS, Sumerlin BS, Barner-Kowollik C. 50th anniversary perspective: polymer functionalization. Macromolecules. 2017;50:5215–52.

  2. 2.

    Grubbs RB, Grubbs RH. 50th anniversary perspective: living polymerization—emphasizing the molecule in macromolecules. Macromolecules. 2017;50:6979–97.

  3. 3.

    Perrier S. 50th anniversary perspective: RAFT polymerization—a user guide. Macromolecules. 2017;50:7433–47.

  4. 4.

    Polymeropoulos G, Zapsas G, Ntetsikas K, Bilalis P, Gnanou Y, Hadjichristidis N. 50th anniversary perspective: polymers with complex architectures. Macromolecules. 2017;50:1253–90.

  5. 5.

    Ouchi M, Terashima T, Sawamoto M. Transition metal-catalyzed living radical polymerization: toward perfection in catalysis and precision polymer synthesis. Chem Rev. 2009;109:4963–5050.

  6. 6.

    Ouchi M, Sawamoto M. 50th anniversary perspective: metal-catalyzed living radical polymerization: discovery and perspective. Macromolecules. 2017;50:2603–14.

  7. 7.

    Zhu J, Bienaymé H (eds). Multicomponent reactions. Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim; 2005.

  8. 8.

    Armstrong RW, Combs AP, Tempest PA, Brown SD, Keating TA. Multiple-component condensation strategies for combinatorial library synthesis. Acc Chem Res. 1996;29:123–31.

  9. 9.

    Dömling A, Wang W, Wang K. Chemistry and biology of multicomponent reactions. Chem Rev. 2012;112:3083–135.

  10. 10.

    Touré BB, Hall DG. Natural product synthesis using multicomponent reaction strategies. Chem Rev. 2009;109:4439–86.

  11. 11.

    Strecker A. Ueber die künstliche Bildung der Milchsäure und einen neuen, dem Glycocoll homologen Körper. Liebigs Ann Chem. 1850;75:27–45.

  12. 12.

    Strecker A. Ueber einen neuen aus Aldehyd—Ammoniak und Blausäure entstehenden Körper. Liebigs Ann Chem. 1854;91:349–51.

  13. 13.

    Theato, P, Multi-component and sequential reactions in polymer synthesis. Switzerland: Springer; 2015. p. 269.

  14. 14.

    Wu H, Gou Y, Wang J, Tao L. Multicomponent reactions for surface modification. Macromol Rapid Commun. 2018;39:1800064.

  15. 15.

    Zhao Y, Wu H, Wang Z, Wei Y, Wang Z, Tao, LJSCC, Training the old dog new tricks: the applications of the Biginelli reaction in polymer chemistry. 2016;59:1541–7.

  16. 16.

    Afshari R, Shaabani A. Materials functionalization with multicomponent reactions: state of the art. ACS Comb Sci. 2018;20:499–528.

  17. 17.

    Kakuchi R. Multicomponent reactions in polymer synthesis. Angew Chem Int Ed. 2014;53:46–8.

  18. 18.

    Rudick JG. Innovative macromolecular syntheses via isocyanide multicomponent reactions. J Polym Sci Part A. 2013;51:3985–91.

  19. 19.

    Yang B, Zhao Y, Wei Y, Fu C, Tao L. The Ugi reaction in polymer chemistry: syntheses, applications and perspectives. Polym Chem. 2015;6:8233–9.

  20. 20.

    Kreye O, Tóth T, Meier MAR. Introducing multicomponent reactions to polymer science: Passerini reactions of renewable monomers. J Am Chem Soc. 2011;133:1790–2.

  21. 21.

    Muzammil EM, Khan A, Stuparu MC. Post-polymerization modification reactions of poly(glycidyl methacrylate)s. RSC Adv. 2017;7:55874–84.

  22. 22.

    Stuparu MC, Khan A. Thiol-epoxy “click” chemistry: application in preparation and postpolymerization modification of polymers. J Polym Sci Part A Polym Chem. 2016;54:3057–70.

  23. 23.

    De S, Stelzer C, Khan A. A general synthetic strategy to prepare poly(ethylene glycol)-based multifunctional copolymers. Polym Chem. 2012;3:2342–5.

  24. 24.

    Espeel P, Du Prez FE. One-pot multi-step reactions based on thiolactone chemistry: a powerful synthetic tool in polymer science. Eur Polym J. 2015;62:247–72.

  25. 25.

    Espeel P, Goethals F, Du Prez FE. One-pot multistep reactions based on thiolactones: extending the realm of thiol-ene chemistry in polymer synthesis. J Am Chem Soc. 2011;133:1678–81.

  26. 26.

    Kohsaka Y, Hagiwara K, Ito K. Polymerization of α-(halomethyl)acrylates through sequential nucleophilic attack of dithiols using a combination of addition–elimination and click reactions. Polym Chem. 2017;8:976–9.

  27. 27.

    Yamada B, Oku F, Harada T. Substituted propenyl end groups as reactive intermediates in radical polymerization. J Polym Sci Part A Polym Chem. 2003; 41: 645–54.

  28. 28.

    Nilles K, Theato P. Polymerization of an activated ester monomer based on 4-vinylsulfonic acid and its polymer analogous reaction. Polym Chem. 2011;2:376–84.

  29. 29.

    Kakuchi R, Theato P. Sequential post-polymerization modification reactions of poly(pentafluorophenyl 4-vinylbenzenesulfonate). Polym Chem. 2014;5:2320–5.

  30. 30.

    Tsunoda T, Otsuka J, Yamamiya Y, Ito S. N,N,N′,N′-Tetramethylazodicarboxamide (Tmad), a new versatile reagent for Mitsunobu reaction—its application to synthesis of secondary-amines. Chem Lett. 1994;23:539–42.

  31. 31.

    Zhu C, Yang B, Zhao Y, Fu C, Tao L, Wei Y. A new insight into the Biginelli reaction: the dawn of multicomponent click chemistry? Polym Chem. 2013;4:5395–5400.

  32. 32.

    Wu H, Wang Z, Tao L. The Hantzsch reaction in polymer chemistry: synthesis and tentative application. Polym Chem. 2017;8:7290–6.

  33. 33.

    Wu H, Yang L, Tao L. Polymer synthesis by mimicking nature’s strategy: the combination of ultra-fast RAFT and the Biginelli reaction. Polym Chem. 2017;8:5679–87.

  34. 34.

    Kakuchi R, Theato P. Three-component reactions for post-polymerization modifications. ACS Macro Lett. 2013;2:419–22.

  35. 35.

    Fields EK. The synthesis of esters of substituted amino phosphonic acids1a. J Am Chem Soc. 1952;74:1528–31.

  36. 36.

    Kabachnik MI, Medved TY. New synthesis of aminophosphonic acids. Dokl Akad Nauk SSSR. 1952;83:689–92.

  37. 37.

    Kakuchi R, Theato P. Efficient multicomponent postpolymerization modification based on Kabachnik–Fields reaction. ACS Macro Lett. 2014;3:329–32.

  38. 38.

    Moldenhauer F, Kakuchi R, Theato P. Synthesis of polymers via Kabachnik–Fields polycondensation. ACS Macro Lett. 2016;5:10–13.

  39. 39.

    Lutz J-F. Sequence-controlled polymerizations: the next Holy Grail in polymer science? Polym Chem. 2010;1:55–62.

  40. 40.

    Lutz J-F, Ouchi M, Liu DR, Sawamoto M. Sequence-controlled polymers. Science. 2013;341:628 -+.

  41. 41.

    Deng X-X, Li L, Li Z-L, Lv A, Du F-S, Li Z-C. Sequence regulated poly(ester-amide)s based on Passerini Reaction. ACS Macro Lett. 2012;1:1300–3.

  42. 42.

    Solleder SC, Meier MAR. Sequence control in polymer chemistry through the Passerini three-component reaction. Angew Chem Int Ed. 2014;53:711–4.

  43. 43.

    Alonso DM, Bond JQ, Dumesic JA. Catalytic conversion of biomass to biofuels. Green Chem. 2010;12:1493–513.

  44. 44.

    Kopetz H. Renewable resources: build a biomass energy market. Nature. 2013;494:29–31.

  45. 45.

    Kakuchi R, Yoshida S, Sasaki T, Kanoh S, Maeda K. Multi-component post-polymerization modification reactions of polymers featuring lignin-model compounds. Polym Chem. 2018;9:2109–15.

  46. 46.

    Hamada T, Yamashita S, Omichi M, Yoshimura K, Ueki Y, Seko N, et al. Multicomponent-reaction-ready biomass-sourced organic hybrids fabricated via the surface immobilization of polymers with lignin-based compounds. ACS Sustain Chem Eng. 2019;7:7795–803.

Download references

Acknowledgements

The author is deeply indebted to Prof. Patrick Theato (Karlsruhe Institute of Technology) and Prof. Katsuhiro Maeda (Kanazawa University) for their generous support. The author gratefully acknowledges the Leading Initiative for Excellent Young Researchers (LEADER) and a JSPS Research Fellowship for Research Abroad for financial support.

Author information

Correspondence to Ryohei Kakuchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kakuchi, R. The dawn of polymer chemistry based on multicomponent reactions. Polym J 51, 945–953 (2019). https://doi.org/10.1038/s41428-019-0209-0

Download citation

Further reading