Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The inherent blue luminescence from oligomeric siloxanes

Abstract

Luminescent polymers without traditional aromatic groups have attracted great attention due to their excellent biocompatibility and promising applications. Understanding of the luminescence mechanism of such polymers, however, is still in its infancy. To further reveal the fluorescence mechanism in depth, two kinds of oligomeric siloxanes were skillfully elaborated and fabricated via a convenient and facile one-pot transesterification polycondensation reaction under catalyst-free conditions. Intriguingly, oligomeric siloxanes bearing nonconventional chromophores show bright blue fluorescence under 365 nm UV lamp illumination. Our preliminary results demonstrate that oxygen clusters, namely, clustering-triggered emission (CTE), can well explain the inherent fluorescence of oligomeric siloxanes. Moreover, intermolecular hydrogen bonds are conducive to the aggregation of the molecular chains. Then, these bonds will facilitate the formation of oxygen clusters, which produce electron cloud overlap to form the unusual chromophores. In addition, the results suggest that the fluorescence intensity of oligomeric siloxanes enhances with increasing concentration. Furthermore, excitation-dependent emission behavior is observed when varying the excitation wavelength of oligomeric siloxanes. It is also found that the luminescence of oligomeric siloxanes could be effectively tuned by the solvent and metal ions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Kelley TW, Baude PF, Gerlach C, Ender DE, Muyres D, Haase MA, et al. Recent progress in organic electronics: materials, devices, and processes. Chem Mater. 2004;16:4413–223.

    CAS  Article  Google Scholar 

  2. 2.

    Qiu F, Wang D, Zhu Q, Zhu L, Tong G, Lu Y, et al. Real-time monitoring of anticancer drug release with highly fluorescent star-conjugated copolymer as a drug carrier. Biomacromolecules. 2014;15:1355–64.

    CAS  Article  Google Scholar 

  3. 3.

    Prodi L, Bolletta F, Montalti M, Zaccheroni N. Luminescent chemosensors for transition metal ions. Coord Chem Rev. 2000;205:59–83.

    CAS  Article  Google Scholar 

  4. 4.

    Yang W, Pan CY, Liu XQ, Wang J. Multiple functional hyperbranched poly(amido amine) nanoparticles: synthesis and application in cell imaging. Biomacromolecules . 2011;12:1523–31.

    CAS  Article  Google Scholar 

  5. 5.

    Chen G, Li W, Zhou T, Peng Q, Zhai D, Li H, et al. Conjugation-induced rigidity in twisting molecules: filling the gap between aggregation-caused quenching and aggregation-induced emission. Adv Mater. 2015;27:4496–501.

    CAS  Article  Google Scholar 

  6. 6.

    Luo J, Xie Z, Lam JWY, Cheng L, Chen H, Qiu C, et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem commun. 2001;18:1740–1.

    Article  Google Scholar 

  7. 7.

    Shang C, Wei N, Zhuo H, Shao Y, Zhang Q, Zhang Z, et al. Highly emissive poly(maleic anhydride-alt-vinyl pyrrolidone) with molecular weight-dependent and excitation-dependent fluorescence. J Mater Chem C. 2017;5:8082–90.

    CAS  Article  Google Scholar 

  8. 8.

    Ye R, Liu Y, Zhang H, Su H, Zhang Y, Xu L, et al. Non-conventional fluorescent biogenic and synthetic polymers without aromatic rings. Polym Chem. 2017;8:1722–7.

    CAS  Article  Google Scholar 

  9. 9.

    Zhang Q, Mao Q, Shang C, Chen YN, Peng X, Tan H, et al. Simple aliphatic oximes as nonconventional luminogens with aggregation-induced emission characteristics. J Mater Chem C. 2017;5:3699–705.

    CAS  Article  Google Scholar 

  10. 10.

    Wang D, Imae T. Fluorescence emission from dendrimers and its pH dependence. J Am Chem Soc. 2004;126:13204–5.

    CAS  Article  Google Scholar 

  11. 11.

    Lee WI, Bae Y, Bard AJ. Strong blue photoluminescence and ECL from OH-terminated PAMAM dendrimers in the absence of gold nanoparticles. J Am Chem Soc. 2004;126:8358–9.

    CAS  Article  Google Scholar 

  12. 12.

    Jasmine MJ, Kavitha M, Prasad E. Effect of solvent-controlled aggregation on the intrinsic emission properties of PAMAM dendrimers. J Lumin. 2009;129:506–13.

    CAS  Article  Google Scholar 

  13. 13.

    Pastor-Pérez L, Chen Y, Shen Z, Lahoz A, Stiriba SE. Unprecedented blue intrinsic photoluminescence from hyperbranched and linear polyethylenimines: polymer architectures and pH-effects. Macromol Rapid Commun. 2007;28:1404–9.

    Article  Google Scholar 

  14. 14.

    Song G, Lin Y, Zhu Z, Zheng H, Qiao J, He C, et al. Strong fluorescence of poly(N-vinylpyrrolidone) and its oxidized hydrolyzate. Macromol Rapid Commun. 2015;36:278–85.

    CAS  Article  Google Scholar 

  15. 15.

    Jayamurugan G, Umesh CP, Jayaraman N. Inherent photoluminescence properties of poly(propyl ether imine) dendrimers. Organ Lett. 2008;10:9–12.

    CAS  Article  Google Scholar 

  16. 16.

    Restani RB, Morgado PI, Ribeiro MP, Correia IJ, Aguiar-Ricardo A, Bonifácio VD. Biocompatible polyurea dendrimers with pH-dependent fluorescence. Angew Chem Int Ed. 2012;51:5162–5.

    CAS  Article  Google Scholar 

  17. 17.

    Yang W, Pan CY. Synthesis and fluorescent properties of biodegradable hyperbranched poly(amido amine)s. Macromol Rapid Commun. 2009;30:2096–101.

    CAS  Article  Google Scholar 

  18. 18.

    Lin Y, Gao JW, Liu HW, Li YS. Synthesis and characterization of hyperbranched poly(ether amide)s with thermoresponsive property and unexpected strong blue photoluminescence. Macromolecules. 2009;42:3237–46.

    CAS  Article  Google Scholar 

  19. 19.

    Shiau SF, Juang TY, Chou HW, Liang M. Synthesis and properties of new water-soluble aliphatic hyperbranched poly(amido acids) with high pH-dependent photoluminescence. Polymer. 2013;54:623–30.

    CAS  Article  Google Scholar 

  20. 20.

    Wu D, Liu Y, He C, Goh SH. Blue photoluminescence from hyperbranched poly(amino ester)s. Macromolecules. 2005;38:9906–9.

    CAS  Article  Google Scholar 

  21. 21.

    Chen X, Liu X, Lei J, Xu L, Zhao Z, Kausar F, et al. Synthesis, clustering-triggered emission, explosive detection and cell imaging of nonaromatic polyurethanes. Mol Sys Des Eng. 2018;3:364–75.

    CAS  Article  Google Scholar 

  22. 22.

    Du Y, Yan HX, Niu S, Bai L, Chai F. Facile one-pot synthesis of novel water-soluble fluorescent hyperbranched poly(amino esters). RSC Adv. 2016;6:88030–7.

    CAS  Article  Google Scholar 

  23. 23.

    Chen H, Dai W, Huang J, Chen S, Yan XH. Construction of unconventional fluorescent poly(amino ester) polyols as sensing platform for label-free detection of Fe3+ ions and l-cysteine. J Mater Sci. 2018;53:15717–25.

    CAS  Article  Google Scholar 

  24. 24.

    Miao X, Liu T, Zhang C, Geng X, Meng Y, Li X. Fluorescent aliphatic hyperbranched polyether: chromophore-free and without any N and P atoms. Phys Chem Chem Phys. 2016;18:4295–9.

    CAS  Article  Google Scholar 

  25. 25.

    Zhang Z, Feng S, Zhang J. Facile and efficient synthesis of carbosiloxane dendrimers via orthogonal click chemistry between thiol and ene. Macromol Rapid Commun. 2016;37:318–22.

    CAS  Article  Google Scholar 

  26. 26.

    Zhao E, Lam JW, Meng L, Hong Y, Deng H, Bai G, et al. Poly[(maleic anhydride)-alt-(vinyl acetate)]: a pure oxygenic nonconjugated macromolecule with strong light emission and solvatochromic effect. Macromolecules. 2014;48:64–71.

    Article  Google Scholar 

  27. 27.

    Du Y, Feng Y, Yan HX, Huang W, Yuan L, Bai L. Fluorescence emission from hyperbranched polycarbonate without conventional chromohpores. J Photo Photobio A. 2018;364:415–23.

    CAS  Article  Google Scholar 

  28. 28.

    Huang W, Yan HX, Niu S, Du Y, Yuan L. Unprecedented strong blue photoluminescence from hyperbranched polycarbonate: From its fluorescence mechanism to applications. J Polym Sci Poly Chem. 2017;55:3690–6.

    CAS  Article  Google Scholar 

  29. 29.

    Zhou X, Luo W, Nie H, Xu L, Hu R, Zhao Z, et al. Oligo(maleic anhydride)s: a platform for unveiling the mechanism of clusteroluminescence of non-aromatic polymers. J Mater Chem C. 2017;5:4775–9.

    CAS  Article  Google Scholar 

  30. 30.

    Zhou Q, Cao B, Zhu C, Xu S, Gong Y, Yuan WZ, et al. Clustering-triggered emission of nonconjugated polyacrylonitrile. Small . 2016;12:6586–92.

    CAS  Article  Google Scholar 

  31. 31.

    Lu H, Feng L, Li S, Zhang J, Lu H, Feng SY. Unexpected strong blue photoluminescence produced from the aggregation of unconventional chromophores in novel siloxane-poly(amidoamine) dendrimers. Macromolecules. 2015;48:476–82.

    CAS  Article  Google Scholar 

  32. 32.

    Lu H, Hu Z, Feng SY. Nonconventional luminescence enhanced by silicone-induced aggregation. Chem-Asian J. 2017;12:1213–7.

    CAS  Article  Google Scholar 

  33. 33.

    Liu B, Wang YL, Bai W, Xu JT, Xu ZK, Yang K, et al. Fluorescent linear CO2-derived poly(hydroxyurethane) for cool white LED. J Mater Chem C. 2017;5:4892–8.

    CAS  Article  Google Scholar 

  34. 34.

    Zhang YW, Zhang Y. Nonconventional macromolecular luminogens with aggregation-induced emission characteristics. J Polym Sci Poly Chem. 2017;55:560–74.

    Article  Google Scholar 

  35. 35.

    Du Y, Yan HX, Huang W, Chai F, Niu S. Unanticipated strong blue photoluminescence from fully biobased aliphatic hyperbranched polyesters. ACS Sustain Chem Eng. 2017;5:6139–47.

    CAS  Article  Google Scholar 

  36. 36.

    Niu S, Yan HX, Chen Z, Li S, Xu P, Zhi X. Unanticipated bright blue fluorescence produced from novel hyperbranched polysiloxanes carrying unconjugated carbon-carbon double bonds and hydroxyl groups. Polym Chem. 2016;7:3747–55.

    CAS  Article  Google Scholar 

  37. 37.

    Niu S, Yan HX, Chen Z, Yuan L, Liu T, Liu C. Water-soluble blue fluorescence-emitting hyperbranched polysiloxanes simultaneously containing hydroxyl and primary amine groups. Macromol Rapid Commun. 2016;37:136–42.

    CAS  Article  Google Scholar 

  38. 38.

    Niu S, Yan HX, Li S, Xu P, Zhi X, Li T. Bright blue photoluminescence emitted from the novel hyperbranched polysiloxane-containing unconventional chromogens. Macromol Chem Phys. 2016;217:1185–90.

    CAS  Article  Google Scholar 

  39. 39.

    Zhang T, Howell BA, Dumitrascu A, Martin SJ, Smith PB. Synthesis and characterization of glycerol-adipic acid hyperbranched polyesters. Polymer. 2014;55:5065–72.

    CAS  Article  Google Scholar 

  40. 40.

    Asakuma Y, Maeda K, Kuramochi H, Fukui K. Theoretical study of the transesterification of triglycerides to biodiesel fuel. Fuel. 2009;88:786–91.

    CAS  Article  Google Scholar 

  41. 41.

    Niu S, Yan H, Chen Z, Du Y, Huang W, Bai L, et al. Hydrosoluble aliphatic tertiary amine-containing hyperbranched polysiloxanes with bright blue photoluminescence. RSC Adv. 2016;6:106742–53.

    CAS  Article  Google Scholar 

  42. 42.

    Li Q, Tang Y, Hu W, Li Z. Fluorescence of nonaromatic organic systems and room temperature phosphorescence of organic luminogens: the intrinsic principle and recent progress. Small. 2018;14:1801560.

    Article  Google Scholar 

  43. 43.

    Chen X, Luo W, Ma H, Peng Q, Yuan WZ, Zhang Y. Prevalent intrinsic emission from nonaromatic amino acids and poly(amino acids). Sci Chin Chem. 2018;61:351–9.

    CAS  Article  Google Scholar 

  44. 44.

    Tomalia DA, Klajnert-Maculewicz B, Johnson KAM, Brinkman HF, Janaszewska A, Hedstrand DM. Non-traditional intrinsic luminescence: inexplicable blue fluorescence observed for dendrimers, macromolecules and small molecular structures lacking traditional/conventional luminophores. Prog Polym Sci. 2019;90:35–117.

    CAS  Article  Google Scholar 

  45. 45.

    Niu S, Yan HX, Li S, Tang C, Chen Z, Zhi X, et al. A multifunctional silicon-containing hyperbranched epoxy: controlled synthesis, toughening bismaleimide and fluorescent properties. J Mater Chem C. 2016;4:6881–93.

    CAS  Article  Google Scholar 

  46. 46.

    Lu H, Zhang J, Feng S. Controllable photophysical properties and self-assembly of siloxane-poly(amidoamine) dendrimers. Phys Chem Chem Phys. 2015;17:26783–9.

    CAS  Article  Google Scholar 

  47. 47.

    Yan J, Zheng B, Pan D, Yang R, Xu Y, Wang L, et al. Unexpected fluorescence from polymers containing dithio/amino-succinimides. Polym Chem. 2015;6:6133–9.

    CAS  Article  Google Scholar 

  48. 48.

    Wang Y, Bin X, Chen, Zheng S, Zhang Y, Yuan W. Emission and emissive mechanism of nonaromatic oxygen clusters. Macromol Rapid Commun. 2018;39:1800528.

    Article  Google Scholar 

  49. 49.

    Li Z, Zhang L, Zhao W, Li X, Guo Y, Yu M, et al. Fluoranthene-based pyridine as fluorescent chemosensor for Fe3+. Inorg Chem Common. 2011;14:1656–8.

    CAS  Article  Google Scholar 

  50. 50.

    Zhang S, Li J, Zeng M, Xu J, Wang X, Hu W. Polymer nanodots of graphitic carbon nitride as effective fluorescent probes for the detection of Fe3+ and Cu2+ ions. Nanoscale. 2014;6:4157–62.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work is sponsored by the National Natural Science Foundation of China (21875188), Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2018JM2024) and the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (CX201719).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hongxia Yan.

Ethics declarations

Conflict of interest

The authors declare on conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Bai, T., Ding, F. et al. The inherent blue luminescence from oligomeric siloxanes. Polym J 51, 869–882 (2019). https://doi.org/10.1038/s41428-019-0208-1

Download citation

Further reading

Search

Quick links