Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structural design of vinyl polymer hydrogels utilizing precision radical polymerization

Abstract

Polymer hydrogels are promising materials for various applications due to their unique properties. The precise construction of networked structures is required for the development of gel materials with improved functionality. This focus review outlines the structural design of polymer gels by utilizing precision radical polymerization techniques, mainly focusing on the authors’ recent research. First, the anticipated advantages of precision radical polymerization in gel synthesis are briefly explained. Then, our approach to synthesizing gels with a homogeneous network structure is described. Finally, controlling the swelling behavior of gels prepared from two types of monomers is highlighted with a focus on the regulation of the monomer sequence in the network chains.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Osada Y, Gong J. Stimuli-responsive polymer gels and their application to chemomechanical systems. Prog Polym Sci. 1993;18:187–226.

    Article  CAS  Google Scholar 

  2. Kikuchi A, Okano T. Pulsatile drug release control using hydrogels. Adv Drug Deliv Rev. 2002;54:53–77.

    Article  CAS  Google Scholar 

  3. Chaterji S, Kwon IK, Park K. Smart polymeric gels: redefining the limits of biomedical devices. Prog Polym Sci. 2007;32:1083–122.

    Article  CAS  Google Scholar 

  4. Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K. The development of microgels/nanogels for drug delivery applications. Prog Polym Sci. 2008;33:448–77.

    Article  CAS  Google Scholar 

  5. Sasaki Y, Akiyoshi K. Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications. Chem Rec. 2010;10:366–76.

    CAS  PubMed  Google Scholar 

  6. Diaz Diaz D, Kuhbeck D, Koopmans RJ. Stimuli-responsive gels as reaction vessels and reusable catalysts. Chem Soc Rev. 2011;40:427–48.

    Article  CAS  Google Scholar 

  7. Caló E, Khutoryanskiy VV. Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J. 2015;65:252–67.

    Article  Google Scholar 

  8. Tanaka T, Fillmore D, Sun S-T, Nishio I, Swislow G, Shah A. Phase transitions in ionic gels. Phys Rev Lett. 1980;45:1636–9.

    Article  CAS  Google Scholar 

  9. Hirokawa Y, Tanaka T. Volume phase transition in a nonionic gel. J Chem Phys. 1984;81:6379–80.

    Article  Google Scholar 

  10. Schild HG. Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci. 1992;17:163–249.

    Article  CAS  Google Scholar 

  11. Halperin A, Kröger M, Winnik FM. Poly(N-isopropylacrylamide) phase diagrams: fifty years of research. Angew Chem Int Ed. 2015;54:15342–67.

    Article  CAS  Google Scholar 

  12. Shibayama M. Spatial inhomogeneity and dynamic fluctuations of polymer gels. Macromol Chem Phys. 1998;199:1–30.

    Article  CAS  Google Scholar 

  13. Di Lorenzo F, Seiffert S. Nanostructural heterogeneity in polymer networks and gels. Polym Chem. 2015;6:5515–28.

    Article  Google Scholar 

  14. Seiffert S. Origin of nanostructural inhomogeneity in polymer-network gels. Polym Chem. 2017;8:4472–87.

    Article  CAS  Google Scholar 

  15. Moad G, Rizzardo E, Thang SH. Living radical polymerization by the RAFT process. Aust J Chem. 2005;58:379–410.

    Article  CAS  Google Scholar 

  16. Moad G, Rizzardo E, Thang SH. Living radical polymerization by the RAFT process—a second update. Aust J Chem. 2009;62:1402–72.

    Article  CAS  Google Scholar 

  17. Gregory A, Stenzel MH. Complex polymer architectures via RAFT polymerization: from fundamental process to extending the scope using click chemistry and nature’s building blocks. Prog Polym Sci. 2012;37:38–105.

    Article  CAS  Google Scholar 

  18. Ouchi M, Terashima T, Sawamoto M. Transition metal-catalyzed living radical polymerization: toward perfection in catalysis and precision polymer synthesis. Chem Rev. 2009;109:4963–5050.

    Article  CAS  Google Scholar 

  19. Rosen BM, Percec V. Single-electron transfer and single-electron transfer degenerative chain transfer living radical polymerization. Chem Rev. 2009;109:5069–119.

    Article  CAS  Google Scholar 

  20. Yamago S. Precision polymer synthesis by degenerative transfer controlled/living radical polymerization using organotellurium, organostibine, and organobismuthine chain-transfer agents. Chem Rev. 2009;109:5051–68.

    Article  CAS  Google Scholar 

  21. Matyjaszewski K, Tsarevsky NV. Macromolecular engineering by atom transfer radical polymerization. J Am Chem Soc. 2014;136:6513–33.

    Article  CAS  Google Scholar 

  22. Iha RK, Wooley KL, Nyström AM, Burke DJ, Kade MJ, Hawker CJ. Applications of orthogonal “click” chemistries in the synthesis of functional soft materials. Chem Rev. 2009;109:5620–86.

    Article  CAS  Google Scholar 

  23. Gérard H. Model networks based on ‘endlinking’ processes: synthesis, structure and properties. Prog Polym Sci. 1998;23:1019–149.

    Article  Google Scholar 

  24. Sakai T, Matsunaga T, Yamamoto Y, Ito C, Yoshida R, Suzuki S, et al. Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers. Macromolecules. 2008;41:5379–84.

    Article  CAS  Google Scholar 

  25. Li X, Tsutsui Y, Matsunaga T, Shibayama M, Chung U-i, Sakai T. Precise control and prediction of hydrogel degradation behavior. Macromolecules. 2011;44:3567–71.

    Article  CAS  Google Scholar 

  26. Akagi Y, Gong JP, Chung U-i, Sakai T. Transition between phantom and affine network model observed in polymer gels with controlled network structure. Macromolecules. 2013;46:1035–40.

    Article  CAS  Google Scholar 

  27. Sakai T, Akagi Y, Kondo S, Chung U. Experimental verification of fracture mechanism for polymer gels with controlled network structure. Soft Matter. 2014;10:6658–65.

    Article  CAS  Google Scholar 

  28. Fujiyabu T, Toni F, Li X, Chung U-i, Sakai T. Three cooperative diffusion coefficients describing dynamics of polymer gels. Chem Commun. 2018;54:6784–7.

    Article  CAS  Google Scholar 

  29. Zhou H, Johnson JA. Photo-controlled growth of telechelic polymers and end-linked polymer gels. Angew Chem Int Ed. 2013;52:2235–8.

    Article  CAS  Google Scholar 

  30. Johnson JA, Lewis DR, Díaz DD, Finn MG, Koberstein JT, Turro NJ. Synthesis of degradable model networks via ATRP and click chemistry. J Am Chem Soc. 2006;128:6564–5.

    Article  CAS  Google Scholar 

  31. Ooi HW, Jack KS, Whittaker AK, Peng H. Photo-initiated thiol–ene “click” hydrogels from RAFT-synthesized poly(N-isopropylacrylamide). J Polym Sci Part A: Polym Chem. 2013;51:4626–36.

    CAS  Google Scholar 

  32. Ooi HW, Jack KS, Peng H, Whittaker AK. “Click” PNIPAAm hydrogels—a comprehensive study of structure and properties. Polym Chem. 2013;4:4788–4800.

    Article  CAS  Google Scholar 

  33. Oshima K, Fujimoto T, Minami E, Mitsukami Y. Model polyelectrolyte gels synthesized by end-linking of tetra-arm polymers with click chemistry: synthesis and mechanical properties. Macromolecules. 2014;47:7573–80.

    Article  CAS  Google Scholar 

  34. Wang Y, Gu Y, Keeler EG, Park JV, Griffin RG, Johnson JA. Star polyMOCs with diverse structures, dynamics, and functions by three-component assembly. Angew Chem Int Ed. 2017;56:188–92.

    Article  CAS  Google Scholar 

  35. Apostolides DE, Patrickios CS, Sakai T, Guerre M, Lopez G, Améduri B, et al. Near-model amphiphilic polymer conetworks based on four-arm stars of poly(vinylidene fluoride) and poly(ethylene glycol): synthesis and characterization. Macromolecules. 2018;51:2476–88.

    Article  CAS  Google Scholar 

  36. Kamata H, Kushiro K, Takai M, Chung U-i, Sakai T. Non-osmotic hydrogels: a rational strategy for safely degradable hydrogels. Angew Chem Int Ed. 2016;55:9282–6.

    Article  CAS  Google Scholar 

  37. Jochi Y, Seki T, Soejima T, Satoh K, Kamigaito M, Takeoka Y. Spontaneous synthesis of a homogeneous thermoresponsive polymer network composed of polymers with a narrow molecular weight distribution. NPG Asia Materials. 2018;10:840–8.

    Article  CAS  Google Scholar 

  38. You Y-Z, Hong C-Y, Bai R-K, Pan C-Y, Wang J. Photo-initiated living free radical polymerization in the presence of dibenzyl trithiocarbonate. Macromol Chem Phys. 2002;203:477–83.

    Article  CAS  Google Scholar 

  39. Ran R, Yu Y, Wan T. Photoinitiated RAFT polymerization in the presence of trithiocarbonate. J Appl Polym Sci. 2007;105:398–404.

    Article  CAS  Google Scholar 

  40. Amamoto Y, Kamada J, Otsuka H, Takahara A, Matyjaszewski K. Repeatable photoinduced self-healing of covalently cross-linked polymers through reshuffling of trithiocarbonate units. Angew Chem Int Ed. 2011;50:1660–3.

    Article  CAS  Google Scholar 

  41. Nicolaÿ R, Kamada J, Van Wassen A, Matyjaszewski K. Responsive gels based on a dynamic covalent trithiocarbonate cross-linker. Macromolecules. 2010;43:4355–61.

    Article  Google Scholar 

  42. Ida S, Kimura R, Tanimoto S, Hirokawa Y. End-crosslinking of controlled telechelic poly(N-isopropylacrylamide) toward a homogeneous gel network with photo-induced self-healing. Polym J. 2017;49:237–43.

    Article  CAS  Google Scholar 

  43. Ida S, Yamawaki M, Maruta T, Hirokawa Y. Precision synthesis of telechelic poly(N-isopropylacrylamide) with thiol-termini for construction of homogeneous network by thiol-ene end-crosslinking. Trans Mat Res Soc Jpn. 2018;43:71–74.

    Article  Google Scholar 

  44. Willcock H, O’Reilly RK. End group removal and modification of RAFT polymers. Polym Chem. 2010;1:149–57.

    Article  CAS  Google Scholar 

  45. Miyazaki H, Kataoka K. Preparation of polyacrylamide derivatives showing thermo-reversible coacervate formation and their potential application to two-phase separation processes. Polymer. 1996;37:681–5.

    Article  CAS  Google Scholar 

  46. Sugihara S, Kanaoka S, Aoshima S. Thermosensitive random copolymers of hydrophilic and hydrophobic monomers obtained by living cationic copolymerization. Macromolecules. 2004;37:1711–9.

    Article  CAS  Google Scholar 

  47. Mun GA, Nurkeeva ZS, Beissegul AB, Dubolazov AV, Urkimbaeva PI, Park K, et al. Temperature-responsive water-soluble copolymers based on 2-hydroxyethyl acrylate and butyl acrylate. Macromol Chem Phys. 2007;208:979–87.

    Article  CAS  Google Scholar 

  48. Komatsu S, Asoh T-A, Ishihara R, Kikuchi A. Facile preparation of degradable thermoresponsive polymers as biomaterials: thermoresponsive polymers prepared by radical polymerization degrade to water-soluble oligomers. Polymer. 2017;130:68–73.

    Article  CAS  Google Scholar 

  49. Ida S, Kawahara T, Fujita Y, Tanimoto S, Hirokawa Y. Thermoresponsive properties of copolymer gels induced by appropriate hydrophilic/hydrophobic balance of monomer combination. Macromol Symp. 2015;350:14–21.

    Article  CAS  Google Scholar 

  50. Ida S, Kawahara T, Kawabata H, Ishikawa T, Hirokawa Y. Effect of monomer sequence along network chains on thermoresponsive properties of polymer gels. Gels. 2018;4:22.

    Article  Google Scholar 

  51. Patrickios CS, Georgiou TK. Covalent amphiphilic polymer networks. Curr Opin Colloid Interface Sci. 2003;8:76–85.

    Article  CAS  Google Scholar 

  52. Erdodi G, Kennedy JP. Amphiphilic conetworks: definition, synthesis, applications. Prog Polym Sci. 2006;31:1–18.

    Article  CAS  Google Scholar 

  53. Triftaridou AI, Hadjiyannakou SC, Vamvakaki M, Patrickios CS. Synthesis, characterization, and modeling of cationic amphiphilic model hydrogels: effects of polymer composition and architecture. Macromolecules. 2002;35:2506–13.

    Article  CAS  Google Scholar 

  54. Rikkou-Kalourkoti M, Loizou E, Porcar L, Matyjaszewski K, Patrickios CS. End-linked, amphiphilic, degradable polymer conetworks: synthesis by sequential atom transfer radical polymerization using a bifunctional, cleavable initiator. Polym Chem. 2012;3:105–16.

    Article  CAS  Google Scholar 

  55. Kitiri EN, Patrickios CS, Voutouri C, Stylianopoulos T, Hoffmann I, Schweins R, et al. Double-networks based on pH-responsive, amphiphilic “core-first” star first polymer conetworks prepared by sequential RAFT polymerization. Polym Chem. 2017;8:245–59.

    Article  CAS  Google Scholar 

  56. Erdodi G, Kennedy JP. Ideal tetrafunctional amphiphilic PEG/PDMS conetworks by a dual-purpose extender/crosslinker. II. Characterization and properties of water-swollen. Membr J Polym Sci Part A: Polym Chem. 2005;43:4965–71.

    Article  CAS  Google Scholar 

  57. Fodor C, Kali G, Iván B. Poly(N-vinylimidazole)-l-poly(tetrahydrofuran) amphiphilic conetworks and gels: synthesis, characterization, thermal and swelling behavior. Macromolecules. 2011;44:4496–502.

    Article  CAS  Google Scholar 

  58. Kali G, Iván B. Poly(methacrylic acid)-l-polyisobutylene amphiphilic conetworks by using an ethoxyethyl-protected comonomer: synthesis, protecting group removal in the cross-linked state, and characterization. Macromol Chem Phys. 2015;216:605–13.

    Article  CAS  Google Scholar 

  59. Kaneko Y, Nakamura S, Sakai K, Aoyagi T, Kikuchi A, Sakurai Y, et al. Rapid deswelling response of poly(N-isopropylacrylamide) hydrogels by the formation of water release channels using poly(ethylene oxide) graft chains. Macromolecules. 1998;31:6099–105.

    Article  CAS  Google Scholar 

  60. Cong H, Li L, Zheng S. Poly(N-isopropylacrylamide)-block-poly(vinyl pyrrolidone) block copolymer networks: synthesis and rapid thermoresponse of hydrogels. Polymer. 2013;54:1370–80.

    Article  CAS  Google Scholar 

  61. Kamata H, Akagi Y, Kayasuga-Kariya Y, Chung U-i, Sakai T. “Nonswellable” hydrogel without mechanical hysteresis. Science. 2014;343:873–5.

    Article  CAS  Google Scholar 

  62. Kamata H, Chung U, Shibayama M, Sakai T. Anomalous volume phase transition in a polymer gel with alternative hydrophilic-amphiphilic sequence. Soft Matter. 2012;8:6876–9.

    Article  CAS  Google Scholar 

  63. Guo H, Sanson N, Hourdet D, Marcellan A. Thermoresponsive toughening with crack bifurcation in phase-separated hydrogels under isochoric conditions. Adv Mater. 2016;28:5857–64.

    Article  CAS  Google Scholar 

  64. Guo H, Mussault C, Brûlet A, Marcellan A, Hourdet D, Sanson N. Thermoresponsive toughening in LCST-type hydrogels with opposite topology: from structure to fracture properties. Macromolecules. 2016;49:4295–306.

    Article  CAS  Google Scholar 

  65. Ida S, Kitanaka H, Ishikawa T, Kanaoka S, Hirokawa Y. Swelling properties of thermoresponsive/hydrophilic co-networks with functional crosslinked domain structures. Polym Chem. 2018;9:1701–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is deeply grateful to Professor Yoshitsugu Hirokawa and Professor Shokyoku Kanaoka for their encouragement and support. The author also thanks the students in the laboratory. The partial supported for this research provided by the Japan Society for the Promotion of Science through a Grant-in-aid for Young Scientists (B) (No. 16K17962) is also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shohei Ida.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ida, S. Structural design of vinyl polymer hydrogels utilizing precision radical polymerization. Polym J 51, 803–812 (2019). https://doi.org/10.1038/s41428-019-0204-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-019-0204-5

Search

Quick links