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Abstract
π-Conjugated molecules have attracted much attention over recent years and have applications in various organic devices.
Single crystals of these molecules are attractive materials for developing unique and/or high-performance devices owing to
their anisotropic densely packed supramolecular 3D polymer structures. However, they are not flexible and are therefore not
suitable for wearable devices. In this focus review, the author’s recent work on flexible crystals involving designing fibril
lamella of slip-stacked molecular wires based on planar π-conjugated molecules and their applications is summarized. Unlike
common organic crystals, 1,4-bis[2-(4-methylthienyl)]-2,3,5,6-tetrafluorobenzene exhibits elastic bending flexibility with π-
functionality. This supramolecular 3D polymer design concept offers top–down synthesis of crystalline fibers and films.
Moreover, the functionality and flexibility of such a crystal realizes both high-performance flexible fluorescent waveguide
and reversible mechanofluorochromic behavior. Finally, the interesting shape-tunable supramolecular formation of a
fluorescent π-conjugated polymer containing a 1,4-bis[2-(4-hexylthienyl)]-2,3,5,6-tetrafluorobenzene repeating unit is
described.

Introduction

The importance of π-conjugated molecules (πCMs) has
increased over the last few decades [1–3], resulting in the
design and synthesis of a variety of πCMs [4–10]. The
formation of supramolecular assemblies of πCMs has
attracted considerable attention in the soft materials research
field [11–13]. In this field, the formation of architectures
with long-range ordering depends on the effective recog-
nition or interaction between rationally designed molecules.
π-Stacking and other monomer interactions give various
supramolecular polymers (Fig. 1a). One-dimensional
growth mainly involving the π-stacking of πCMs gives
nanofibers as supramolecular 1D polymers (Fig. 1b)
[14, 15]. The difficulty of the controlling the alignment of
the nanofibers is similar to common polymers made with
covalent bonds, thus resulting in a lack of anisotropy and

density on a macroscopic scale. The two-dimensional
growth of the organic molecules gives crystalline films as
supramolecular 2D polymers (Fig. 1c) [16, 17]. Thin films
consisting of one or a few molecular layers often show
flexibility similar to common polymer films. The three-
dimensional growth of πCMs gives bulk single crystals
(Fig. 1d). Because these are highly ordered 3D molecular
assemblies brought together by noncovalent bonding, they
will be called here supramolecular 3D polymers. These
materials have attracted much attention owing to their ani-
sotropic densely packed molecular structures, which offer a
high refractive index and charge transportation properties
[18–20]. However, it is well known that these crystals are
not flexible and are mechanically weak [21, 22].

Organic single crystals of πCMs are anisotropic and
densely packed molecular assemblies and have an important
role in optoelectronic devices and sensors [23–25]. The
defect-free alignment with dense packing of πCMs con-
tributes to their excellent performance in devices. However,
organic crystals are often brittle, making it difficult to create
flexible devices with crystalline organic materials. How-
ever, π-conjugated polymers [26–30] offer flexible fibers
and films, but these materials sometimes contain amorphous
domains and defects [31–33]. Consequently, flexible and
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tough crystals of πCMs are candidate materials for high-
performance flexible devices and mechanosensors. Thus,
research into flexible organic crystals under bending stress
has received considerable attention in recent years [34].
Bendable organic crystals occasionally show irreversible
(plastic) deformation under applied stress [35]. On the other
hand, reversible (elastic) bending of organic single crystals
is a rare phenomenon, and it has only been shown in a few
recent reports [36]. The development of novel π-conjugated
molecular frameworks with improved and reliable perfor-
mance is necessary for practical applications.

Elastic organic crystals of π-CMs

Fibril lamella based on stretchable wires are known to give
dense and flexible materials that are found in nature,
including the muscle tissue of animals and the scales of fish
[37]. The author hypothesizes that π-CMs suitable for
elastic organic crystals require: (i) a planar conformation,
(ii) a rigid structure, and (iii) controlled intermolecular
interactions for face-to-face slip-stacking. The molecular
sliding in slip-stacking is a candidate for stretchable

molecular wires in fibril lamella. This target structure is
exemplified by fibers based on a fibril lamella morphology
of slip-stacked molecular wires (Fig. 2).

For the preparation of elastic crystals meeting the afore-
mentioned criteria (i–iii), research focused on oligothiophene
molecules with a tetrafluorobenzene core. The sulfur atom in
the thiophene and the fluorine atom on the tetrafluorobenzene
provide the four intramolecular hydrogen bonds, [H…Fa], and
contacts, [S…Fb], that would yield a highly planar and rigid
molecular structure [38–40]. Moreover, crystal structures
based on the slip-stacking of related oligothiophene molecules
have also been reported. The author designed 1,4-bis[2-(4-
methylthienyl)]-2,3,5,6-tetrafluorobenzene, 1, which was
synthesized by a palladium-catalyzed Stille cross-coupling
reaction and gives centimeter-scale single crystals (Fig. 3)
[41–43]. The crystal structure of 1 contains S⋅⋅⋅F and F⋅⋅⋅H
intramolecular interactions that are significantly shorter than
the sums of their van der Waals radii (Fig. 3a, b). These
contacts result in highly planar molecules with a maximum
torsion angle of 1.27° between the tetrafluorophenylene
and thiophene units. The molecules form a slip-stacked
assembly with a center-to-center separation between the
thiophene–tetrafluorobenzene–thiophene planes of 2.347 Å

Fig. 1 a Self-assembly of π-conjugated molecules into supramolecular polymers. b Nanofibers. c Crystalline thin film. d Bulk single crystals
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(Fig. 3c). The fibril lamella morphology originates from the-
slip-stacked molecular wires at the (010) and (001)
faces through self-assembly of the planar tetra-
fluorophenylene–thiophene molecules (Fig. 3c). To clearly
observe the macroscopic elastic bending, the author investi-
gated the mechanical performance of the crystal under UV
irradiation at 365 nm (Fig. 3d). The straight crystal (i) bent
under applied stress (ii–vi) and relaxed upon stress reduction

(vii and viii) to recover its original shape. The crystal bending
angle exceeded 180° (vi). This reversible bending–relaxation
of the crystal could be cycled many times.

Mechanically induced shaping of micro- and
nanofibers

Supramolecular 3D polymer materials, especially crystals,
of π-CMs have attracted considerable research attention
owing to their potential applications in organic devices
[44–46]. The macroscopic shapes of the crystals of π-CMs
are important for the development of device applications,
and depend on bottom–up processes. Consequently, it is
difficult to intentionally control their shapes. Top–down
processing (i.e., forming small crystals from larger ones) is
a very practical method for crystal shape control, but it is
only feasible for soft and flexible materials. Typical soft
materials, such as polymers, are of great interest as their
flexibility allows them to form various shapes via facile
mechanical shaping. However, unlike polymer materials,
applying stress to common organic single crystals generally
causes them to disintegrate into powders and crystallites.

Thermal- or photochemical stimuli-triggered splitting
deformations of specific organic single crystals into small or
fine crystal fragments are interesting from the perspective of
crystal engineering [47–49]. However, these deformations
occur randomly at crystal defects and are thus not suitable
for top–down-controlled crystal shaping. Laser fabrication
of microcrystals into nanoparticles is a common top–down
approach [50], but this method is complex and can only

Fig. 2 Schematic illustration of a “fibril lamella” crystal. a Bending–
relaxation motion. b Change in the center-to-center distance of π-CMs,
resulting from the deformation of molecular wires
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Fig. 3 a 1,4-Bis[2-(4-methylthienyl)]-2,3,5,6-tetrafluorobenzene, 1. b Crystal structure. c Molecular packing and morphology in the crystal.
d Elastic bending motion of the crystal. Figures adapted with permission from ref. [41], Wiley–VCH
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produce nanoscale crystals. Mechanical shaping is an ideal
process for preparing organic devices, but the brittleness of
typical crystals makes it difficult to produce the exact
shapes that are desired for use in specific devices. However,
if large-scale (i.e., greater than micrometer scale) organic
crystals could be endowed with elastic bending flexibility,
organic single crystals could be easily processed into var-
ious fine shapes, such as fibers, via mechanical shaping.

Mechanically induced shaping (i.e., top–down processing)
of organic single crystals is an undeveloped area of research,
because applying stress to nonflexible crystalline materials
generally causes them to disintegrate (Fig. 4a). The author has
described a mechanical splitting phenomenon of the elastic

organic single crystal 1, and a facile shaping method for
centimeter-scale elastic organic single crystals of a fluorescent
π-CM into various fine crystalline fibers (thickness: ~ 50 μm;
width: ~ 150 μm; length: ~ 25mm) (Fig. 4b, c). The fibers
produced maintained their original crystal structure and
properties (i.e., fluorescence efficiency and elastic flexibility).
Thus, these long, fine, flexible, fluorescent organic single-
crystal fibers show potential for applications in optoelec-
tronics. Moreover, crystalline films could be prepared using
the Scotch tape method (Fig. 4d) [43]. Elastic organic single
crystals provide a new approach for crystal fibers and films,
namely, the top–down synthesis of supramolecular 1D and
2D polymers [43].
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Fig. 4 a Illustration of the common organic crystal breakage under
applied stress. b Illustration of the mechanical shaping of a single
crystal of 1 into crystal fibers. c Photographic images of a crystal of 1
under UV (365 nm) irradiation: (i) a crystal of 1; (ii) cutting the top of
the crystal; (iii) the fabricated fine and long fibers; (iv) the fabricated

fine and short fibers. SEM images: (v) the fabricated fine and
long fibers and (vi) a nanometer-scale fiber. d Fabrication of a crys-
talline film via the Scotch tape method. Figures adapted with per-
mission from ref. [43], Wiley–VCH
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Mechanically induced shaping can be performed
on elastic organic single crystals with similar crystal
morphologies to 1, and can be carried out using other elastic
crystals, such as 1,4-bis(2-thienyl)-2,3,5,6-tetra-
fluorobenzene 2 [42] and Cu(acac)2 (Scheme 1), which
show fibril lamella crystal morphologies.

Elastic organic crystals of extended π-CMs with
flexible optical waveguide

On the basis of this design strategy for elastic crystals
(Fig. 2), the author previously found that two concerted
intramolecular interactions (S···F contacts and hydrogen
bonding) enhance the molecular planarity and rigidity
(Fig. 2). To create elastic organic crystals, the author next
focused on a related but further extended π-conjugated
framework with a large planar core and fluoroarene termini

(Fig. 5a, b) [51, 52]. The crystal structure of 3 is shown in
Fig. 5c. The interatomic distance between S and F is
0.271 nm, which indicates intramolecular S···F interactions.
The author also observed hydrogen bonding between H and
F (d= 0.220 nm). The small torsion angle between the core
and the fluoroarene units (2.16°) indicates an extended π-
conjugated structure with high planarity and rigidity. The
packing of the molecules showed a slip-stacked assembly
along the a axis, supported by successive F···F halogen
bonding interactions, which resulted in close π–π-stacking
interactions (ly= 0.353 nm) (Fig. 5c). The center-to-center
distance of the molecular planes (lz) is 0.434 nm. The fibril
lamella morphology originates from the slip-stacked mole-
cular wires through the self-assembly of planar molecules
and crisscross packing [42] as viewed from the (010) face.
The single-crystal structure of 4 also shows an intramole-
cular S···F interaction and hydrogen bonding. However, the
torsion angle between the core unit and fluoroarene unit
(11.36°) was greater than that of 3 (Fig. 5c).

Individual crystals were subjected to a mechanical test to
assess their elastic features (Fig. 6a). The single crystals 3
and 4 were fixed on a metal pin with adhesive. Figure 6b
shows the mechanical bending performance. Bending stress
was applied by pushing the crystal with a glass plate.
The straight-shaped crystal bent under applied stress in
the b direction and recovered its original straight shape
upon releasing the stress. Notably, this reversible
bending–relaxation of the crystal could be cycled many
times. This mechanical motion clearly indicates that the
crystals are elastic (bending) organic single crystals. The
crystal bending angle exceeded ca. 180°.

Scheme 1 Chemical structures of 1,4-bis(2-thienyl)-2,3,5,6-tetra-
fluorobenzene 2 and Cu(acac)2
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mechanical test. b Mechanical bending and relaxation of the crystals 3
and 4. Stress was applied by pushing the crystal with a glass plate
under UV (365 nm) irradiation. Figures adapted with permission from
ref. [52], Wiley–VCH
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The author found that the single crystals exhibited
unique optical waveguide (OWG) characteristics (Fig. 7)
[52]. The refractive index and a low amount of surface
defects are very important factors for high-performance
OWG [53]. Organic crystals of π-CMs are suitable OWG
materials compared with π-conjugated polymers, but their
crystals are generally less flexible. Thus, elastic crystals of
π-CMs are considered to be suitable for high-performance
and flexible OWG materials. By illuminating the straight
crystal with a focused laser (405 nm) at different posi-
tions, reddish–orange emission was always detected from
the end of the straight crystal 3, irrespective of the exci-
tation position (Fig. 7a). This is a typical characteristic of
OWG materials [53–56]. The bent crystal 3, in which the
elastic strain (ε value) of the bent crystal was calculated to
be 1.9%, also showed a comparable waveguide perfor-
mance (Fig. 7b). Figure 7c, d show the emission spectra of
the straight and the bent crystals, respectively, at the
illuminated position (black dotted line) and at the end of
the crystal (solid line). The emission band at the end of the
crystal showed a peak at 597 nm with a narrower full-

width at half-maximum (FWHM: 34 nm) than at the
illuminated position (573 nm, FWHM: 56 nm). The
spectral profiles did not change substantially depending
on the illumination position, although the emission
intensity at the end very slightly decreased with increasing
distance (Fig. 7c, d). The author measured the fluores-
cence intensities at the illuminated position (Iin) and at the
end of the crystal (Iout) to calculate the optical loss coef-
ficient by measuring the spatially resolved PL spectra and
fitting by using a single exponential curve (Iin/Iout=
Ae(−αX), where X is the distance between the illuminated
position and the end of the crystal, and α is the loss
coefficient) [53–56]. The α values were thus calculated to
be 0.043 and 0.047 dB/mm for the straight and bent
crystals, respectively (Fig. 7e).

Reversible mechanical sensors

Another interesting feature of organic single crystals
is the occurrence of mechanochromism and
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mechanofluorochromism [57–60]. The molecular orien-
tation and intermolecular interactions in light-emitting
crystals are perturbed by mechanical forces (e.g.,
shearing, grinding, tension, and hydrostatic pressure),
which can cause a change in the emission color of the
crystals. There have been few reports of reversible color
changes under the application and release of mechanical
stress (pressure) [61, 62], although this could be an
important characteristic of these materials. Conse-
quently, flexible and tough crystals of π-CMs are can-
didate materials for reversible mechanosensors.

The author has also studied a crystal of the commercially
available 4,7-dibromo-2,1,3-benzothiadiazole, DBBT (Fig. 8a,
b) [63]. A centimeter-scale needle-shaped single crystal of the
molecule bends under applied stress and quickly reverts to its
original shape upon relaxation; therefore, the material is an
elastic organic single crystal (Fig. 8c). Moreover, the crystal
shows greenish–blue colored fluorescence (λ= 513 nm, Φ=
ca. 9%). In contrast, the crystal showed a slightly different
spectrum (λ= 504 nm) and color (sky-blue) when it was
mechanically bent near its elastic bending limit (30°) (Fig. 8d).

The unique mechanical and fluorescent properties of the crystal
include mechanofluorochromism based on mechanical
bending–relaxation cycles. The change in fluorescence is
probably due to changing the center-to-center separation length
in the slip-stacked molecular packing. The packing of DBBT
shifts from stable to metastable during mechanical bending,
resulting in a blue-shifted fluorescence band. Relaxation of the
bent crystal allows the recovery of the stable packing mode.

Solvent control of the supramolecular formation
of π-conjugated polymers

Supramolecular (crystalline) structures based on π-con-
jugated polymers are of interest in the broad field of device
applications [64–67]. The development of highly crystalline
π-conjugated polymers [64–68] is important for controlling
their optoelectronic properties. 1,4-Bis[2-(4-methylthie-
nyl)]-2,3,5,6-tetrafluorobenzene, 1, is simple and attractive
for solid-state fluorescence and is a suitable monomer
structure [41–43]. Thus, the author studied a π-conjugated

N
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BrBr

Fig. 8 a Chemical structure of
DBBT. b Crystal structure.
c Bending–relaxation motion.
d Bending
mechanofluorochromism.
Emission spectra and a
photograph of the straight and
the bent crystals. Figures
adapted with permission from
ref. [63], the American
Chemical Society
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polymer formed from thiophene–tetrafluorobenzene
repeating units. The author has also recently reported var-
ious π-conjugated polymer syntheses via direct arylation

polycondensation (DArP) [69–75]. Thus, DArP of 1,4-
dibromo-2,3,5,6-tetrafluorobenzene PF4 with 3,3′-dihexyl-
2,2′-bithiophene BT gave a simple alternating copolymer,

Scheme 2 Synthesis of PBT6PF2 and PBT6PF4 via DArP
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PBT6PF4 (Scheme 2) [76]. Surprisingly, this polymer
yielded a highly crystalline and fluorescent film (Fig. 9a–e).
The alternating polymer PBT6PF2 synthesized by DArP of
1,4-dibromo-3,5-difluorobenzene PF2 with BT [75], how-
ever, does not show an ordered structure in the film state. In
the film, the polymer exhibited efficient red-colored fluor-
escence, an improved quantum yield (Φsol= 13%→Φfilm=
23%) and a crystalline structure. Its efficient fluorescence
behavior is due to the J-aggregated packing structure of the
thiophene–tetrafluorophenylene–thiophene units (Fig. 9f)
[41–43]. Interestingly, supramolecular gel formation occur-
red in appropriate solvents, and the crystalline domain and
fluorescence properties of the gel could be directly con-
trolled by the choice of the solvent (Fig. 9g). The polymer
self-assembled into a spherical form that exhibited red
fluorescence in a non-aromatic solvent (1,2-dichloroethane)
and into a fibrous form that exhibited yellow fluorescence in
an aromatic solvent (mesitylene).

Final remarks

Organic crystalline supramolecular 3D polymers, bulk organic
crystals, have attracted much attention owing to their potential
applications in unique and/or high-performance organic devi-
ces. However, organic crystals are generally not flexible.
Herein, the author’s research on elastic organic crystals is
introduced and discussed. The author developed an elastic
organic crystal with π-functionality, which shows reversible
bending flexibility and optical properties. The first disclosure of
1,4-bis[2-(4-methylthienyl)]-2,3,5,6-tetrafluorobenzene pro-
vided exciting new opportunities in flexible materials science,
unique material applications, and top–down shape-tuning based
on flexibility and π-conjugated molecular structures. In addition
to the top–down shape-tuning of the elastic crystals, control
over the supramolecular formation (bottom–up synthesis) of a
π-conjugated polymer was described. This type of polymer
could be designed by harnessing the properties of 1,4-bis[2-(4-
methylthienyl)]-2,3,5,6-tetrafluorobenzene. This research will
enable the development of new polymers and crystals with
potential applications in various organic devices.
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