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Abstract
We study the dependence of the fracture surface energy on the pulling velocity for nanoporous polypropylene (PP) sheets to
identify two components: static and dynamic components. We show that these terms can be interpreted, respectively, as
plastoelastic and viscoelastic components, as has been shown for soft polyethylene (PE) foams in previous work.
Considering significant differences in the pore size, volume fraction, and Young’s modulus of the present PP and previous
PE sheets, the present results suggest a universal physical mechanism for the fracture of porous polymer sheets. The simple
physical interpretation emerging from the mechanism could be useful for developing tough polymers. Equivalence of
Griffith's energy balance in fracture mechanics to a stress criterion is also discussed and demonstrated using the present
experimental data.

Introduction

Cellular solids, which are porous materials with well-defined
pore sizes, are found in natural and artificial materials and
are a useful form of materials [1]. Cork, balsa, and apples [2]
are cellular solids originated from plants, and the stereom of
echinoderms [3], the skeleton of a certain sponge [4], and the
frustle of diatoms [5] are examples from other living crea-
tures. Such materials possess mechanical advantages
because they can be light, strong, shock absorbing, and heat
retaining. Accordingly, active studies have been performed
on mechanical and fracture mechanical properties, focusing
on an important parameter for cellular solids, the volume
fraction of the matrix material ϕ [1]. However, studies on
velocity-dependent properties of their fracture are relatively
limited compared with intensive studies that have been
performed on other materials such as adhesive [6–10],
laminar [11], viscoelastic [12, 13], weakly cross-linked
[14, 15], biopolymer gel [16], and biological composite [17]
materials, including recent active experimental [18–22],
numerical [23–26], and theoretical [27, 28] studies [29] on
the velocity jump in crack propagation in polymer sheets.

Previously, we studied mechanical and fracture
mechanical properties of soft solidified foam of noncross-

linked polyethylene. Young's modulus E, the characteristic
pore size d0, and the volume fraction ϕ of the foams were
on the orders of 1 MPa, 1 mm, and 0.03, respectively. For
the soft foams, we established scaling laws for Young's
modulus and the fracture surface energy as a function of ϕ.
The scaling laws thus found are different from the laws
established for well-studied hard cellular solids of Young's
modulus typically 3000MPa [30]. Furthermore, we
revealed for the same soft solidified foams a simple relation
between the fracture surface energy (required at the crack
initiation) and the pulling velocity with a clear physical
interpretation [31]. Here, we test this simple description for
the velocity dependence of the fracture energy using a
porous polymer of different nature. This sample is not
polyethylene (PE) but polypropylene (PP) and E, d0, and ϕ
in this case are significantly different from those in the
previous study: E ~ 200MPa, d0 ~ 1 μm, and ϕ ~ 0.5. As a
result, we found that the same description is well-applicable
for this quite different material and suggest that the simple
description proposed in the previous study can be uni-
versally relevant to a certain class of porous polymers.

Experimental section

Materials

In this experiment, we use sheets of polypropylene (PP) that
possess a porous structure, as shown in Fig. 1a. The
structure may be characterized by a few different length
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scales and the largest scale is around 1 μm, which could be
comparable with 10−5 m, as seen from the SEM image. The
volume fraction ϕ and the thickness of the sheet are 0.44
and 23 μm, respectively. The sheet is fabricated from bulk
with a stretching process and, thus, tends to be stronger in
the direction defined as the machine direction.

Mechanical measurement

The elongation of a sheet from the natural length and the
tensile force acting on the sheet were measured with a hand-
made setup used in our previous study [31]. This setup is
equipped with horizontally placed two pairs of clamp bars
specially designed for sheet samples of a dimension com-
parable with 50 cm to avoid any slips at the clamps and
local slacking of a sheet sample under stretch. The hor-
izontal width of the sample is 10 cm for failure stress
measurements (5 cm for force-extension measurements) and
the vertical height (i.e., the distance between the inner edges
of the clamp bars) is 12.5 cm. The bottom pair of clamp bars
are fixed to the setup frame, while the position and speed of
the mobile upper pair of clamp bars can be controlled by a
slider system (EZSM6D040 K, Oriental Motor) through a
digital force gauge (FCC-50B, NIDEC-Shimpo). Each
measurement is made for a given fixed velocity of the upper
clamp, which defines the pulling velocity V. All experi-
ments are performed by setting the machine direction in

horizontal direction, and the constant stretching speed V is
given in the vertical direction by the controlled slider
system. The pulling velocity V is varied from 0.03 mm/s to
0.4 mm/s.

Fracture mechanical measurements are performed with
the same setup but by introducing a macroscopic line crack
with a sharp knife at the center of the sample (see Fig. 1b).
The line crack is created in the horizontal direction (i.e.,
the machine direction), and the length 2a is varied from 2
to 32 mm.

Results

Stress–strain curve and Young’s modulus

Figure 2a shows typical results of the relation between
stress σ and strain ε of a sheet sample at different velocities.
The nearly overlapped two sets of data at each velocity
show high reproducibility of the experiment. The relation
exhibits a nonlinear response with a weak dependence on
velocity. However, in the initial regime in which ε and σ are
less than ~0.01 and ~2MPa, respectively, the relation is
almost linear and is almost independent of velocity (see
Fig. 2a’ for the magnified version). In fact, Young’s mod-
ulus extracted from this region is approximately constant, as
shown in Fig. 2b. Here, the modulus at each velocity is
determined as the average of the three moduli obtained from
the initial regimes of three sets of force-elongation mea-
surements performed at each velocity, with the bottom and
top values of each error bar showing the minimum and
maximum of the three results.

Failure stress of a sample with a line crack and
fracture surface energy

Figure 3a and b shows typical results for the relation
between the failure stress σf and the half-length of the line
crack a. σf for given a and V are measured three times, and

(a) (b)

Fig. 1 a An SEM image of the porous polypropylene sheet used in the
experiment (Copyright 2018 by Mitsubishi Chemical Corporation).
The length of the scale bar is 1 μm. b Magnified view near a crack tip.
The machine direction are shown by double-headed arrows, which
is perpendicular to the pulling direction. The length of the scale bar is
1 mm

Fig. 2 a Stress–strain curves obtained from the force-extension mea-
surements performed with samples without any macroscopic cracks at
extension velocities of V= 0.03 and 0.4 mm/s. a’Magnified version of

a to more clearly show the initial quasi-linear regime. b Young’s
modulus E determined in the initial regime in the stress–strain curve as
a function of the stretching velocity V
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the average of the three values is plotted with an error bar in
the figure. When data are plotted on a log–log scale, the data
for a given V clearly collapse on a straight line with slope
−1/2. This justifies that we use the following Griffith′s
formula to estimate the fracture surface energy G for a given
V [32]:

σf ¼ 2EG
πa

� �1=2

ð1Þ

Figure 3c shows the relation between the pulling velocity
V and the fracture surface energy G on the basis of Eq. (1).
The relation can be well described by the linear form: G=
A+ BV. Here, A and B are constants independent of
V. On the other hand, it is theoretically justified and

experimentally confirmed that G is proportional to the
volume fraction ϕ [30, 31]. Exploiting this property, we
rewrite the expression G= A+ BV in the following form:

G ¼ ϕG0ð1þ V=V0Þ ð2Þ

with the introduction of G0 and V0, which are independent
of V (G0 and V0 are defined by the relations A= ϕG0 and
B= ϕG0/V0).

In the following, we justify that the above expression can
be reasonably well interpreted as in the following form:

G ¼ ϕðσY þ ηðV=dÞÞδ ð3Þ
We examine the validity of the above expression at the level
of scaling laws. For simplicity, we regard ϕ ~ 1 and ignore
this factor in the following. The first term ϕσYδ ~ σYδ can be
regarded as the standard expression for plastic fracture,
where σY is the yield stress, and δ is the crack-opening
distance [32]. Considering a typical value of σY for PP, say,
50MPa (this estimate is consistent, at a semi-quantitative
level, with Fig. 2a, if we remind that ϕ= 0.44), the opening
distance δ can be estimated as ~10−5 m because ϕG0 ~G0

(~σYδ) is estimated as 650 J/m2 from Fig. 3c. This value of δ
is comparable with the largest characteristic scale of the
porous structure in the sample; it is quite natural that we
expect the crack-opening distance scale as this length scale.
The second term, in particular, the quantity η(V/d) just
describes the viscous stress that we have to add to σY in the
dynamic case. Here, d describes the length scale around the
crack tip dynamically affected, and it is natural to assume
that this scale as δ. Taking the viscous effect into account is
reasonable because the glass transition temperature of PP
(typically 0 °C) is well below ambient temperature at which
the experiments were performed, and the viscosity η is
estimated as 2 × 106 Pa.s from Fig. 3c by estimating the
value ϕG0/V0 ~G0/V0, which scale as ηδ/d ~ η. To gain
physical insight, we can roughly estimate the number of
monomers N in the entangled polymer by invoking the
reptation model [33]. This crude estimate gives η �
η0N

3=N2
e with Ne as the entangle distance (~100) and η0

as the viscosity of monomers (~1 mPa.s). As a result, we
obtain a plausible value, N ~ 104. Since we have established
the same reasoning for Eq. (3) in ref. [31] for soft foam
sheets of polyethylene, this result suggests a certain degree
of universality of Eq. (3). Our result suggests that the
dynamic toughness is significantly increased if the number
of monomers N is increased, because the velocity-
dependent term in G contains the viscosity η and, even if
the reptation model is not appropriate, η is strongly
dependent on N.

Equation (3) established as above can be interpreted as
composed of a static term reflecting a plastoelastic effect
and a dynamic term reflecting a viscoelastic effect, as

Fig. 3 Failure stress σf as a function of crack size 2a at V= 0.03 mm/s
(a) and V= 0.4 mm/s (b). The insets show corresponding plots on a
log–log scale. c Fracture surface energy G as a function of velocity V
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explained as follows. This expression is composed of two
terms, one independent of V and the other dependent on V.
In other words, G is composed of the static and dynamic
parts. The static part reflects a plastic effect because it is
proportional to the yield stress σY. The dynamic part cor-
responds to the viscous effect because it originates from
viscous stress. On the other hand, G in this study is deter-
mined by linear-elastic fracture mechanics. Therefore, it is
natural to interpret the static and dynamic terms as plas-
toelastic and viscoelastic effects, respectively.

Equivalence of Griffith energy balance to a
stress criterion

As we discussed in our previous paper, the energy balance
is equivalent to a stress criterion, if we note that the stress
concentration is cutoff at the length scale below which the
continuum description fails, although Griffith's energy bal-
ance is sometimes distinguished from the stress criteria for
fracture. (This cutoff length scale corresponds to the largest
scale characterizing the porous structure and, thus, will be
called d in the following.) This can be experimentally
confirmed for the present material. To illustrate this, let us
briefly review how the energy balance reduces to a stress
criterion. We introduce a critical failure stress σc for a given
material through the following relation:

σc ’ ðEG=dÞ1=2 ð4Þ

This equation comes from the well-known Griffith’s
formula for the failure stress σf ≃ (EG/a)1/2 for a crack of
length ~ a and the idea of Griffith's cavities. We further
introduce the maximum stress that appears at the crack tip at
the critical point of failure at which the remote stress σ0 is
equal to the failure stress σf:

σm ’ σf ða=dÞ1=2 ð5Þ

This equation comes from the well-known Inglis' stress
concentration formula for the stress distribution around a
crack σ(r)≃ σ0(a/r)

1/2 at a distance r from the crack tip,
which should be cutoff at the scale d. (This relation σ(r)≃
σ0(a/r)

1/2 was confirmed in numerical studies [34, 35] and
Eq. (5) was directly confirmed in another numerical study
[36].) The stress criteria that is equivalent to Griffith's
energy balance is then given by

σc ’ σm ð6Þ
In fact, from Eqs. (4)–(6), we recover Griffith’s formula.

To confirm that the above description is relevant to the
present experimental data, we experimentally determine σc
and σm, respectively, from Eq. (4) (using measured values of
E, G, and d) and from Eq. (5) (using measured values of σf,
a, and d). We here set the coefficient for Eq. (4) to be 1 and
that for Eq. (5) to be 0.841, and we use d= 10−5 m for both
equations, for simplicity. The results are shown in Fig. 4,
which confirms that the stress criteria Eq. (6) is satisfied for
the experimentally observed fractures and, thus, the above
description is consistent with our experimental results. (If
we denote dimensionless numerical coefficients suppressed
in Eqs. (4)–(6) as c4, c5, and c6, respectively, Eq. (6) can be
expressed as (EG/d)1/2= (c6c5/c4)σf(a/d)

1/2, which means
that the agreement between σc an σm in Fig. 4 shows that
c6c5/c4 is close to 0.841).

Conclusion

We studied the fracture surface energy at the onset of crack
initiation as a function of the pulling velocity. As a result,
we find that the fracture energy is described by static and
dynamic components. The former corresponds to the stan-
dard plastic fracture, and the latter reflects the viscous flow
that occurs at a crack tip. The both components are char-
acterized by the length scale, which is comparable with the
pore size. The existence of the dynamic and viscous com-
ponents suggests a simple principle for toughening: the
increase in the degree of polymerization could greatly
enhance the dynamic toughness. The equivalence of Grif-
fith's energy balance to a stress criterion is also demon-
strated. These results parallel the results obtained for
significantly different porous polymer sheets, which sug-
gests the universality of the present physical interpretation,
although further studies will be needed to clarify the lim-
itations of the present interpretation.

Considering that the basic physical properties of polymer
materials are quite dependent on preparation crystallinity,
molecular orientation, the size and shape of the porous

Fig. 4 σc vs. σm. See the text for the details
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structure, and the types of polymers [37], the emergence of
this kind of universality may be unexpected. (The fracture
of crystalline polymers on microscopic scales are starting to
be reproduced in simulations [38]). We consider that one of
the reasons for this universality comes from the introduction
of a macroscopic crack, whose scale is much larger than
characteristic scales for crystallinity, the domains in which
the molecules are oriented, the porous structure, and so on.
On such a macroscopic scale, it is known that polymers
universally exhibit yielding and viscous flow in a similar
manner. When these points are considered, it would not be
surprising if the fracture associated with a macroscopic
crack is universally governed by yielding and viscous flow
of their simplest forms, which we suggest here.

The study concerns the fracture surface energy required
at the onset of crack initiation. Such a fracture energy
should be in general distinguished from the fracture energy
required during crack propagation. In fact, we recently
studied the relation between the energy release rate, which
can be interpreted as the fracture surface energy required
during crack propagation, and the crack-propagation velo-
city, using the same material studied in this study [21]. As a
result, we did not observe crack propagation in the velocity
range studied in this study. However, in the previous study
[21], for a technical reason, the constant-speed crack pro-
pagation with a fixed-grip condition was initiated some time
after we applied a given strain to samples, and we consider
that the effect of stress relaxation due to this preparation
time could suppress crack propagation. This point will be
further discussed elsewhere [22].
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