A versatile method for the synthesis of poly(glycolic acid): high solubility and tunable molecular weights


Poly(glycolic acid) (PGA) is an important biopolymer, especially in medical applications because of its suitable mechanical, biocompatible, and biodegradable properties. PGA can degrade within weeks, depending on its molecular weight. Production of high molecular weight PGA is important to achieve sufficient mechanical stability for biomedical applications. High molecular weight PGA is difficult to obtain by direct condensation of the related carboxylic acids; therefore, polyglycolide is typically made by ring opening polymerization of the cyclic diester glycolide. However, this procedure is restrictive because of the high cost of the raw material (glycolide) and the associated high energy consumption. Here, we describe the synthesis of PGA via an azeotropic distillation method that enables tunable molecular weights. The synthesized PGA is highly soluble in organic solvents and degrades faster than reference PGA.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Soni S, Gupta H, Kumar N, Nishad DK, Mittal G, Bhatnagar A. Biodegradable biomaterials. Recent Pat Biomed Eng. 2010;3:30–40.

    CAS  Article  Google Scholar 

  2. 2.

    Singh V, Tiwari M. Structure-processing-property relationship of poly(glycolic acid) for drug delivery systems 1: synthesis and catalysis, Int J Polym Sci. 2010;2010:1–23.

    Article  Google Scholar 

  3. 3.

    Ha TK, Blom CE, Günthard HH. A theoretical study of various rotamers of glycolic acid. J Mol Struct. 1981;85:285–92.

    Article  Google Scholar 

  4. 4.

    Marin E, Briceño MI, Caballero-George C. Critical evaluation of biodegradable polymers used in nanodrugs. Int J Nanomed. 2013;8:3071–91.

    Google Scholar 

  5. 5.

    Moon S, Deguchi K, Miyamoto M, Kimura Y. Synthesis of polyglactin by melt/solid polycondensation of glycolic/L-lactic acids. Polym Int. 2004;53:254–8.

    CAS  Article  Google Scholar 

  6. 6.

    Nandagopal R, Venkatachalam A, Padmanabhan AR, Ramachandran T, Roy AK, Srividya V, (Eds.). Textile and clothing management. Krefeld, Germany: Allied Publishers; 2004.

    Google Scholar 

  7. 7.

    Gaudin R, Knipfer C, Henningsen A, Smeets R, Heiland M, Hadlock T. Approaches to peripheral nerve repair: generations of biomaterial conduits yielding to replacing autologous nerve grafts in craniomaxillofacial surgery. Biomed Res Int. 2016;2016:1–18.

    Article  Google Scholar 

  8. 8.

    Lu Y, Schmidt C, Beuermann S. Fast synthesis of high-molecular-weight polyglycolide using diphenyl bismuth bromide as catalyst. Macromol Chem Phys. 2014;216:395–9.

    Article  Google Scholar 

  9. 9.

    Schmidt C, Behl M, Lendlein A, Beuermann S. Synthesis of high molecular weight polyglycolide in supercritical carbon dioxide. RSC Adv. 2014;4:35099–105.

    CAS  Article  Google Scholar 

  10. 10.

    Gilding DK, Reed AM. Biodegradable polymers for use in surgery-polyglycolic/ poly(actic acid) homo- and copolymers: 1. Polymer. 1979;20:1459–64.

    CAS  Article  Google Scholar 

  11. 11.

    Cooper DR, Sutton GJ, Tighe J. Poly a-ester degradation studies. V. thermal degradation of polyglycollide. J Polym Sci Polym Chem. 1973;2045:2045–56.

    Article  Google Scholar 

  12. 12.

    Marega C, Marigo A, Zannetti R, Paganetto G. A structural investigation on poly(glycolic acid). Eur Polym J. 1992;28:1485–6.

    CAS  Article  Google Scholar 

  13. 13.

    Hurrell S, Cameron RE. Polyglycolide: degradation and drug release. Part I: changes in morphology during degradation. J Mater Sci Mater Med. 2001;12:811–6.

    CAS  Article  Google Scholar 

  14. 14.

    Domb AJ, Kost J, Wiseman DM. Handbook of Biodegradable Polymers. Florida, ABD:CRC Press; 1997.

  15. 15.

    Agrawal CM, Niederauer GG, Athanasiou KA. Fabrication and characterization of PLA-PGA orthopedic implants. Tissue Eng. 1995;1:241–53.

    CAS  Article  Google Scholar 

  16. 16.

    Takahashi K, Taniguchi I, Miyamoto M, Kimura Y. Melt/solid polycondensation of glycolic acid to obtain high-molecular-weight poly(glycolic acid). Polymer. 2000;41:8725–8.

    CAS  Article  Google Scholar 

  17. 17.

    Dali S, Lefebvre H, El Gharbi R, Fradet A. Synthesis of poly(glycolic acid) in ionic liquids. J Polym Sci A Polym Chem. 2006;44:3025–35.

    CAS  Article  Google Scholar 

  18. 18.

    Murugan KD, Radhika S, Baskaran I, Anbarasan R. Clay catalyzed synthesis of bio-degradable poly(glycolic acid). Chin J Polym Sci. 2008;26:393–8.

    CAS  Article  Google Scholar 

  19. 19.

    Kaitian X, Kozluca A, Denkbaş EB, Pişkin E. Poly (D,L-Lactic acid) homopolymers: synthesis and characterization. Turk J Chem. 1996;20:43–53.

    CAS  Google Scholar 

  20. 20.

    Enomoto K, Ajioka M, Yamaguchi A. US Patent 5. 1994;310:865.

    Google Scholar 

  21. 21.

    Scott G (Ed.) Degradable polymers: principles and application. 2nd ed. Netherlands: Springer;2002.

  22. 22.

    Yoshida Y, Miyamoto M, Obuchi S, Ideda K, Ohta M. US Patent 5. 1998;770:683.

    Google Scholar 

  23. 23.

    Ichikawa F, Kobayashi M, Ohta M, Yoshida Y, Obuchi S, Itoh H. US Patent 5. 1995;440:008.

    Google Scholar 

  24. 24.

    Göktürk E, Pemba AG, Miller SA. Polyglycolic acid from the direct polymerization of renewable C1 feedstocks. Polym Chem. 2015;6:3918–25.

    Article  Google Scholar 

  25. 25.

    Tuskaev VA, Gagieva SC, Kurmaev DA, Kolosov NA, Mikhaylik ES, Golubev EK, et al. Titanium (III, IV)-containing catalytic systems for production of ultrahigh molecular weight polyethylene nascent reactor powders, suitable for solventless processing—Impact of oxidation states of transition metal. Polymers. 2018;10:1–13.

    Google Scholar 

  26. 26.

    Kister G, Cassanas G, Vert M. Morphology of poly(glycolic acid) by IR and Raman spectroscopies. Spectrochim Acta Part A. 1997;53:1399–403.

    Article  Google Scholar 

  27. 27.

    Schwarz K, Epple M. A detailed characterization of polyglycolide prepared by solid- state polycondensation reaction. Macromol Chem Phys. 1999;200:2221–9.

    CAS  Article  Google Scholar 

  28. 28.

    Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymer. 2011;3:1377–97.

    CAS  Article  Google Scholar 

  29. 29.

    Shawe S, Buchanan F, Eileen HJ, Farrar D. A study on the rate of degradation of the bioabsorbable polymer polyglycolic acid (PGA). J Mater Sci. 2006;41:4832–8.

    CAS  Article  Google Scholar 

  30. 30.

    King MW, Gupta BS, Guidoin R. Biotextiles as medical implants. 1st ed. Cambridge: Woodhead Publishing Limited; 2013.

    Google Scholar 

Download references


We gratefully acknowledge financial support by the Scientific and Technological Research Council of Turkey (BIYOTEG-5130028 Project) and Suleyman Demirel University BAP (TSG-2018–6749 Project). We also thank Zeynep Kocer for graphical designs.

Author information



Corresponding author

Correspondence to Serdar Sezer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sanko, V., Sahin, I., Aydemir Sezer, U. et al. A versatile method for the synthesis of poly(glycolic acid): high solubility and tunable molecular weights. Polym J 51, 637–647 (2019). https://doi.org/10.1038/s41428-019-0182-7

Download citation

Further reading