Flame retardancy and toughening modification of glass fiber-reinforced polycarbonate composites

Abstract

Different kinds of flame retardant and toughened glass fiber (GF)-reinforced polycarbonate composites were fabricated through melt extrusion blending and injection molding. Methacrylate-butadiene-styrene (MBS), styrene-maleic anhydride (SMA), ethylene methylacrylate (EMA), and silicon acrylate rubber (SiR) were used as toughness modifiers. Two kinds of aryl phosphorus, namely, triphenyl phosphate (TPP) and resorcinol bis(diphenyl phosphate) (RDP), and oligomeric siloxane-containing potassium dodecyl diphenylsulfone sulfonate (SiKSS) were adopted as flame retardants (FRs). The V-notched Izod impact test revealed that SiR could significantly improve the toughness of GF-reinforced polycarbonate composites. The flame retardancy of FR PC/GF/SiR composites was investigated by the UL-94 vertical burning test. The FR PC/GF/SiR composites showed good flame retardancy with a V0 rating when 9 wt% TPP, 6 wt% TPP/RDP, or 0.2 wt% SiKSS was added. The effect of the FRs on the mechanical properties, rheological properties and heat deflection temperature of PC/GF/SiR composites was also investigated.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Ozkan C, Karsli NG, Aytac A, Deniz V. Short carbon fiber reinforced polycarbonate composites: effects of different sizing materials. Compos Part B. 2014;62:230–35.

  2. 2.

    Danyadi L, Gulyas J, Pukanszky B. Coupling of carbon fibers to polycarbonate: surface chemistry and adhesion. Compos Interface. 2003;10:61–76.

  3. 3.

    Tanimoto Y, Inami T, Yamaguchi M, Nishiyama N, Kasai K. Preparation, mechanical, and in vitro properties of glass fiber-reinforced polycarbonate composites for orthodontic application. J Biomed Mater Res Part B. 2015;103B:743–50.

  4. 4.

    Biswas KK, Ikueda M, Somiya S. Study on creep behavior of glass fiber reinforced polycarbonate. Adv Compos Mater. 2001;10:265–73.

  5. 5.

    Wang W, Zhao G, Wu X, Li X, Wang C. Investigation on phosphorus halogen-free flame-retardancy systems in short glass fiber-reinforced PC/ABS composites under rapid thermal cycle molding process condition. Polym Compos. 2015;36:1653–63.

  6. 6.

    Jang KS. Mechanics and rheology of basalt fiber-reinforced polycarbonate composites. Polymer. 2018;147:133–41.

  7. 7.

    Threepopnatkul P, Kaerkitcha N, Athipongarporn N. Effect of surface treatment on performance of pineapple leaf fiber–polycarbonate composites. Compos Part B. 2009;40:628–32.

  8. 8.

    Garhwal A, Maiti SN. Influence of styrene–ethylene–butylene–styrene (SEBS) copolymer on the short-term static mechanical and fracture performance of polycarbonate (PC)/SEBS blends. Polym Bull. 2016;73:1719–40.

  9. 9.

    Garhwal A, Maiti SN. Fabrication of super tough polycarbonate /styrene-ethylene -butylene-styrene grafted maleic anhydride (SEBS-g-MA) blends: morphological, short term static mechanical and fracture performance interpretation. Polymer. https://doi.org/10.1080/03602559.2018.1466167.

  10. 10.

    Cho K, Yang JH, Yoon S, Hwang M, Nair S. V. Toughening of polycarbonate: effect of particle size and rubber phase contents of the core-shell impact modifier. J Appl Polym Sci. 2005;95:748–55.

  11. 11.

    Falk JC, Narducy KW, Cohen MS, Brunner R. Transparent notch width sensitivity improvers for polycarbonate. Polym Eng Sci. 1980;20:763–8.

  12. 12.

    Hansen MG, Bland DG. Impact strength and melt viscosity of bisphenol-A polycarbonate and styrene-maleic-anhydride copolymer blends. Polym Eng Sci. 1985;25:896–902.

  13. 13.

    Wang XH, Wang ZG, Jiang W, Liu CH, Yang HD, Zhang HX, Jiang BZ. Toughened blend of polycarbonate and epoxidized ethylene propylene diene rubber. Polymer. 1997;38:6251–3.

  14. 14.

    Xiao Xiong, Hu Shuang, Zhai Jinguo, Chen Tao, Mai Yongyi. Thermal properties and combustion behaviors of flame-retarded glass fiber-reinforced polyamide 6 with piperazine pyrophosphate and aluminum hypophosphite. J Therm Anal Calorim. 2016;125:175–85.

  15. 15.

    Wen W, Guo J, Zhao X, Li X, Yang H, Chen JK. Synthesis of an efficient S/N-based flame retardant and its application in polycarbonate. Polymers. 2018;10:441.

  16. 16.

    Wu N, Lang S. Flame retardancy and toughness modification of flame retardant polycarbonate/acrylonitrile-butadiene-styrene/AHP composites. Polym Degrad Stabil. 2016;123:26–35.

  17. 17.

    Liu C, Yao Q. Design and synthesis of efficient phosphorus flame retardant for polycarbonate. Ind Eng Chem Res. 2017;56:8789–96.

  18. 18.

    Zhang WC, Li XM, Guo XY, Yang RJ. Mechanical and thermal properties and flame retardancy of phosphorus-containing polyhedral oligomeric silsesquioxane (DOPO-POSS)/polycarbonate composites. Polym Degrad Stabil. 2010;95:2541–6.

  19. 19.

    Gao M, Yang S. A novel intumescent flame-retardant epoxy resins system. J Appl Polym Sci. 2010;115:2346–51.

  20. 20.

    Yuan DD, Yin HQ, Cai XF. Synergistic effects between silicon-containing flame retardant and potassium-4-(phenylsulfonyl) benzenesulfonate (KSS) on flame retardancy and thermal degradation of PC. J Therm Anal Calorim. 2013;114:19–25.

  21. 21.

    Li ZQ, Yang RJ. Flame retardancy, thermal and mechanical properties of sulfonate-containing polyhedral oligomeric silsesquioxane (S-POSS)/polycarbonate composites. Polym Degrad Stabil. 2015;116:81–7.

  22. 22.

    Guo JW, Wang YQ, Feng LJ, Zhong X, Yang CF, Liu S, Cui YD. Performance of a novel sulfonate flame retardant based on adamantane for polycarbonate. Polymer. 2013;37:437–41.

  23. 23.

    Smith GN, Hallett JE, Joseph P, Tretsiakova-McNally S, Zhang T, Blum FD, Eastoe J. Structural studies of thermally stable, combustion-resistant polymer composites. Polym J. 2017;49:711–9.

  24. 24.

    Martin C, Lligadas G, Ronda JC, Galia M, Cadiz V. Synthesis of novel boron-containing epoxy-novolac resins and properties of cured products. J Polym Sci Part A. 2006;44:6332–44.

  25. 25.

    JangBN WilkieCA. The effects of triphenylphosphate and recorcinolbis(diphenylphosphate) on the thermal degradation of polycarbonate in air. Thermochim Acta. 2005;433:1–12.

  26. 26.

    Park SJ, Jin JS. Effect of silane coupling agent on interphase and performance of glass fibers/unsaturated polyester composites. J Colloid Interface Sci. 2001;242:174–9.

  27. 27.

    Shokoohi S, Arefazar A, Khosrokhavar R. Silane coupling agents in polymer-based reinforced composites: a review. J Reinf Plast Comp. 2008;27:473–85.

  28. 28.

    Tanrattanakul V, Baer E, Hiltner A, Hu R, Dimonie ZV, EL-Aasser MS, Sperling LH, Mylonakis SG. Toughening polycarbonate with core–shell structured latex particles. J Appl Polym Sci. 1996;62:2005–13.

  29. 29.

    Chang FC, Wu JS, Chu LH. Fracture and impact properties of polycarbonates and MBS elastomer‐modified polycarbonates. J Appl Polym Sci. 1992;44:491–504.

  30. 30.

    Wang HL, Tan HS, Li JY, Yu YZ. Phase morphology and dynamic mechanical behavior for MIS toughened polyvinyl chloride. J Appl Polym Sci. 2013;129:3466–72.

  31. 31.

    Bagotia N, Singh BP, Choudhary V, Sharma DK. Excellent impact strength of ethylene-methyl acrylate copolymer toughened polycarbonate. RSC Adv. 2015;5:87589.

  32. 32.

    Stretz HA, Cassidy PE, Paul DR. Blends of bisphenol A polycarbonate and rubber-toughened styrene–maleic anhydride copolymers. J Appl Polym Sci. 1999;74:1508–15.

  33. 33.

    Yanagase A, Ito M. Silicone-based impact modifiers for poly(vinyl chloride),engineering resins, and blends. J Polym Sci Part A. 2004;42:1112–19.

  34. 34.

    Wildes GS, Harada T, Keskkula H, Paul DR, Janarthanan V, Padwa AR. Synthesis and characterization of an amine-functional SAN for the compatibilization of PC/ABS blends. Polymer. 1999;40:3069–82.

  35. 35.

    Fu SQ, Guo JW, Zhu DY, Yang Z, Yang CF, Xian JX, Li X. Novel halogen-free flame retardants based on adamantane for polycarbonate. RSC Adv. 2015;5:67054.

  36. 36.

    Pawlowski KH, Schartel B. Flame retardancy mechanisms of triphenyl phosphate, resorcinolbis(diphenyl phosphate) and bisphenol A bis(diphenyl phosphate) in polycarbon-ate/acrylonitrile–butadiene–styrene blends. Polym Int. 2007;56:1404–14.

  37. 37.

    Tang Z, Li Y, Zhang YJ, Jiang P. Oligomeric siloxane containing triphenylphosphonium phosphate as a novelflame retardant for polycarbonate. Polym Degrad Stabil. 2012;97:638–44.

  38. 38.

    Ni P, Fang Y, Qian L, Qiu Y. Flame-retardant behavior of a phosphorus/silicon compound on polycarbonate. J Appl Polym Sci. 2018;135:45815.

  39. 39.

    Zhu DY, Guo JW, Xian JX, Fu SQ. Novel sulfonate-containing halogen-free flame-retardants: effect of ternary and quaternary sulfonates centered on adamantane on the properties of polycarbonate composites. RSC Adv. 2017;7:39270.

Download references

Acknowledgements

This project is supported by the National Natural Science Foundation of China (Grant No. 51705291, 51675307) and the Jiangsu Province Science Foundation for Youths, China (BK20160371).

Author information

Correspondence to Yanjin Guan or Liang Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark