Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Next-generation organic semiconductors driven by bent-shaped π-electron cores

Abstract

The development of organic semiconductors (OSCs) applicable to organic field-effect transistors (OFETs) is crucial to realizing printed and flexible electronics, such as flexible displays and low-priced identification tags. OSCs for printed and flexible electronics must meet several prerequisites: (1) high chemical stability for use without special care, (2) charge carrier mobility exceeding 10 cm2/Vs for several applications, (3) appropriate solubility in organic solvents for solution processes, (4) high thermal durability for device fabrications and applications, and (5) a simple synthetic route for large-scale production. Previously reported OSCs do not meet all the requirements simultaneously, which has motivated intensive development of OSCs for future printed and flexible electronics applications. The author and collaborators developed state-of-the-art OSCs based on bent-shaped π-electron cores (π-cores) that satisfy the requirements for printed semiconductor devices. In this focused review, the chemistry and device engineering are introduced with respect to sulfur-bridged V-shaped and N-shaped π-cores among a series of bent-shaped π-cores.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5

References

  1. Müllen K, Scherf U. Organic light-emitting devices: synthesis, properties and applications. Weinheim: Wiley-VCH; 2006.

  2. Bao Z, Locklin J. Organic field-effect transistors. 1st ed. Florida: CRC Press; 2007.

  3. Kudo K, Yamashina M, Moriizumi T. Field effect measurement of organic dye films. Jpn J Appl Phys. 1984;23:130.

    Article  CAS  Google Scholar 

  4. Sun S-S, Sariciftci NS. Organic photovoltaics: mechanism, materials, and devices. Boca Raton: CRC Press; 2005.

  5. Nielsen KT, Bechgaard K, Krebs FC. Removal of palladium nanoparticles from polymer materials. Macromolecules. 2005;38:658–9.

    Article  CAS  Google Scholar 

  6. Nielsen KT, Bechgaard K, Krebs FC. Effective removal and quantitative analysis of Pd, Cu, Ni, and Pt catalysts from small-molecule products. Synthesis. 2006;2006:1639–44.

    Article  Google Scholar 

  7. Yamashita Y, Tsurumi J, Hinkel F, Okada Y, Soeda J, Zajaczkowski W, et al. Transition between band and hopping transport in polymer field-effect transistors. Adv Mater. 2014;26:8169–73.

    Article  CAS  Google Scholar 

  8. Lin YY, Gundlach DJ, Nelson SF, Jackson TN. Stacked pentacene layer organic thin-film transistors with improved characteristics. IEEE Electron Device Lett. 1997;18:606–8.

    Article  CAS  Google Scholar 

  9. Takimiya K, Shinamura S, Osaka I, Miyazaki E. Thienoacene-based organic semiconductors. Adv Mater. 2011;23:4347–70.

    Article  CAS  Google Scholar 

  10. Ebata H, Izawa T, Miyazaki E, Takimiya K, Ikeda M, Kuwabara H, et al. Highly soluble [1]Benzothieno[3,2-b]benzothiophene (BTBT) derivatives for high-performance, solution-processed organic field-effect transistors. J Am Chem Soc. 2007;129:15732–3.

    Article  CAS  Google Scholar 

  11. Yamamoto T, Takimiya K. Facile synthesis of highly π-extended heteroarenes, dinaphtho[2,3-b:2‘,3‘-f]chalcogenopheno[3,2-b]chalcogenophenes, and their application to field-effect transistors. J Am Chem Soc. 2007;129:2224–5.

    Article  CAS  Google Scholar 

  12. Natsume Y, Minakata T, Aoyagi T. Pentacene thin film transistors fabricated by solution process with directional crystal growth. Org Electron. 2009;10:107–14.

    Article  CAS  Google Scholar 

  13. Okamoto K, Kawamura T, Sone M, Ogino K. Study on liquid crystallinity in 2,9‐dialkylpentacenes. Liq Cryst. 2007;34:1001–7.

    Article  CAS  Google Scholar 

  14. Kang MJ, Doi I, Mori H, Miyazaki E, Takimiya K, Ikeda M, et al. Alkylated dinaphtho[2,3-b:2’,3’-f]thieno[3,2-b]thiophenes (Cn–DNTTs): organic semiconductors for high-performance thin-film transistors. Adv Mater. 2011;23:1222–5.

    Article  CAS  Google Scholar 

  15. Anthony JE, Brooks JS, Eaton DL, Parkin SR. Functionalized pentacene: improved electronic properties from control of solid-state order. J Am Chem Soc. 2001;123:9482–3.

    Article  CAS  Google Scholar 

  16. Giri G, Verploegen E, Mannsfeld SCB, Atahan-Evrenk S, Kim DH, Lee SY, et al. Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature. 2011;480:504.

    Article  CAS  Google Scholar 

  17. Giri G, Park S, Vosgueritchian M, Shulaker MM, Bao Z. High-mobility, aligned crystalline domains of TIPS-pentacene with metastable polymorphs through lateral confinement of crystal growth. Adv Mater. 2014;26:487–93.

    Article  CAS  Google Scholar 

  18. Kuwabara H, Ikeda M, Takimiya K. Field effect transistor. 2010:WO2010/098372 A1.

  19. Iino H, Kobori T, Hanna J. Improved thermal stability in organic FET fabricated with a soluble BTBT derivative. J Non-Cryst Solids. 2012;358:2516–9.

    Article  CAS  Google Scholar 

  20. Iino H, Usui T, Hanna J. Liquid crystals for organic thin-film transistors. Nat. Commun. 2015;6:6828

    Article  CAS  Google Scholar 

  21. Kuribara K, Wang H, Uchiyama N, Fukuda K, Yokota T, Zschieschang U, et al. Organic transistors with high thermal stability for medical applications. Nat Commun. 2012;3:723.

    Article  Google Scholar 

  22. Okamoto T, Mitsui C, Yamagishi M, Nakahara K, Soeda J, Hirose Y, et al. V-shaped organic semiconductors with solution processability, high mobility, and high thermal durability. Adv Mater. 2013;25:6392–7.

    Article  CAS  Google Scholar 

  23. Troisi A. Dynamic disorder in molecular semiconductors: charge transport in two dimensions. J Chem Phys. 2011;134:034702.

    Article  Google Scholar 

  24. Mitsui C, Okamoto T, Yamagishi M, Tsurumi J, Yoshimoto K, Nakahara K, et al. High-performance solution-processable N-shaped organic semiconducting materials with stabilized crystal phase. Adv Mater. 2014;26:4546–51.

    Article  CAS  Google Scholar 

  25. Mitsui C, Tsuyama H, Shikata R, Murata Y, Kuniyasu H, Yamagishi M, et al. High performance solution-crystallized thin-film transistors based on V-shaped thieno[3,2-f:4,5-f’]bis[1]benzothiophene semiconductors. J Mater Chem C. 2017;5:1903–9.

    Article  CAS  Google Scholar 

  26. Tedjamulia ML, Tominaga Y, Castle RN, Lee ML. The synthesis of dinaphthothiophenes. J Heterocycl Chem. 1983;20:1143–8.

    Article  CAS  Google Scholar 

  27. Marsella MJ, Carroll PJ, Swager TM. Conducting pseudopolyrotaxanes: a chemoresistive response via molecular recognition. J Am Chem Soc. 1994;116:9347–8.

    Article  CAS  Google Scholar 

  28. Lloyd-Jones GC, Moseley JD, Renny JS. Mechanism and application of the Newman-Kwart O→S rearrangement of O-Aryl thiocarbamates. Synthesis. 2008;2008:661–89.

    Article  Google Scholar 

  29. Wex B, Kaafarani BR, Neckers DC. Efficient isomer-pure synthesis of a benzo[b]thiophene analogue of pentacene. J Org Chem. 2004;69:2197–9.

    Article  CAS  Google Scholar 

  30. Wex B, Jradi FM, Patra D, Kaafarani BR. End-capping of conjugated thiophene–benzene aromatic systems. Tetrahedron. 2010;66:8778–84.

    Article  CAS  Google Scholar 

  31. Kobayashi S, Nishikawa T, Takenobu T, Mori S, Shimoda T, Mitani T, et al. Control of carrier density by self-assembled monolayers in organic field-effect transistors. Nat Mater. 2004;3:317–22.

    Article  CAS  Google Scholar 

  32. Takeya J, Yamagishi M, Tominari Y, Hirahara R, Nakazawa Y, Nishikawa T, et al. Very high-mobility organic single-crystal transistors with in-crystal conduction channels. Appl Phys Lett. 2007;90:102120.

    Article  Google Scholar 

  33. Uemura T, Hirose Y, Uno M, Takimiya K, Takeya J. Very high mobility in solution-processed organic thin-film transistors of highly ordered [1]Benzothieno[3,2-b]benzothiophene derivatives. Appl Phys Express. 2009;2:111501.

    Article  Google Scholar 

  34. Umeda T, Kumaki D, Tokito S. Surface-energy-dependent field-effect mobilities up to 1 cm2/V s for polymer thin-film transistor. J Appl Phys. 2009;105:024516.

    Article  Google Scholar 

  35. Minari T, Miyadera T, Tsukagoshi K, Aoyagi Y, Ito H. Charge injection process in organic field-effect transistors. Appl Phys Lett. 2007;91:053508.

    Article  Google Scholar 

  36. Kubo T, Haeusermann R, Tsurumi J, Soeda J, Okada Y, Yamashita Y, et al. Suppressing molecular vibrations in organic semiconductors by inducing strain. Nat Commun. 2016;7:11156.

    Article  CAS  Google Scholar 

  37. Soeda J, Okamoto T, Mitsui C, Takeya J. Stable growth of large-area single crystalline thin films from an organic semiconductor/polymer blend solution for high-mobility organic field-effect transistors. Org Electron. 2016;39:127–32.

    Article  CAS  Google Scholar 

  38. Kumagai S, Murakami H, Tsuzuku K, Makita T, Mitsui C, Okamoto T, et al. Solution-processed organic-inorganic hybrid CMOS inverter exhibiting a high gain reaching 890. Org Electron. 2017;48:127–31.

    Article  CAS  Google Scholar 

  39. Makita T, Sasaki M, Annaka T, Sasaki M, Matsui H, Mitsui C, et al. Spontaneously formed high-performance charge-transport layers of organic single-crystal semiconductors on precisely synthesized insulating polymers. Appl Phys Lett. 2017;110:163302.

    Article  Google Scholar 

  40. Tsurumi J, Matsui H, Kubo T, Hausermann R, Mitsui C, Okamoto T, et al. Coexistence of ultra-long spin relaxation time and coherent charge transport in organic single-crystal semiconductors. Nat Phys. 2017;13:994.

    Article  CAS  Google Scholar 

  41. Yamamura A, Matsui H, Uno M, Isahaya N, Tanaka Y, Kudo M, et al. Painting integrated complementary logic circuits for single-crystal organic transistors: a demonstration of a digital wireless communication sensing tag. Adv Electron Mater. 2017;3:1600456.

    Article  Google Scholar 

  42. Yamamura A, Watanabe S, Uno M, Mitani M, Mitsui C, Tsurumi J, et al. Wafer-scale, layer-controlled organic single crystals for high-speed circuit operation. Sci Adv. 2018;4:eaao5758.

    Article  Google Scholar 

  43. Watanabe S, Sugawara H, Hausermann R, Blulle B, Yamamura A, Okamoto T, et al. Remarkably low flicker noise in solution-processed organic single crystal transistors. Commun Phys. 2018;1:37.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Japan Science and Technology Agency (JST) PRESTO “Molecular Technology and Creation of New Functions” (JPMJPR13K5) and “Scientific Innovation for Energy Harvesting Technology” (JPMJPR17R2) programs as well as a Japan Society for the Promotion of Science (JSPS) KAKENHI Grant-in-Aid for Scientific Research (B; No. 25288091, 17H03104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiro Okamoto.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okamoto, T. Next-generation organic semiconductors driven by bent-shaped π-electron cores. Polym J 51, 825–833 (2019). https://doi.org/10.1038/s41428-019-0180-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-019-0180-9

This article is cited by

Search

Quick links