Original Article | Published:

Preparation of a soluble polysilsesquioxane containing a macrocyclic structure and capture of palladium ions


In this study, a soluble polysilsesquioxane containing a macrocyclic structure (PSQ-MC) was successfully prepared by the hydrolytic condensation of a dual site-type silane coupling agent, i.e., bis{3-[3-(trimethoxysilyl)propylthio]propyl}phthalate (BTPP), using hydrochloric acid as the catalyst in an acetone/ethyl acetate mixed solvent. Based on the results of 29Si NMR and gel permeation chromatography and the fact that the dimer of the cyclized BTPP was present in the intermediate after the reaction of BTPP in a dilute solution at room temperature, PSQ-MC was assumed to be a polymer in which an 8-membered cyclic siloxane with two 23-membered rings was linked by a single siloxane bond. In addition, PSQ-MC was able to capture palladium ions.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    Kakuchi T, Haba O, Yokota K. Cyclopolymerization of divinyl ethers. Synthesis and the cation-binding property of poly(crown ethers). Macromolecules. 1992;25:4854–8.

  2. 2.

    Rahman MS, Hashimoto T, Kodaira T. Cationic cyclopolymerization of new divinyl ethers: the effect of ether and ester neighboring functional groups on their cyclopolymerization tendency. J Polym Sci Part A Polym Chem. 2003;41:281–92.

  3. 3.

    Sakai R, Satoh T, Kakuchi R, Kaga H, Kakuchi T. Helicity induction of polyisocyanate with a crown cavity on the main chain synthesized by cyclopolymerization of α,ω-diisocyanate. Macromolecules. 2004;37:3996–4003.

  4. 4.

    Zhang M, Yang Y, Liu L, Chang W, Li J. Pseudo-cryptand-containing copolymers: cyclopolymerization and biocompatible water-soluble Al3+ fluorescent sensor in vitro. Macromolecules. 2016;49:844–52.

  5. 5.

    Hashimoto H, Kakuchi T, Haba O, Yokota K. Polymeric chiral crown ethers. 8. Synthesis of optically active poly(dibenzo-19-crown-6)s via cyclopolymerization of diepoxides. Macromolecules. 1992;25:1828–31.

  6. 6.

    Habaue S, Morita M, Okamoto Y. Anionic polymerization of macrocyclic α-(alkoxymethyl)acrylates leading to novel vinyl polymer with crown ether type side chain. Macromolecules. 2002;35:2432–4.

  7. 7.

    Lin NT, Xie CY, Huang SL, Chen CH, Luh TY. Oligonorbornenes with hammock-like crown ether pendants as artificial transmembrane ion channel. Chem Asian J. 2013;8:1436–40.

  8. 8.

    Zhao C, Nagura K, Takeuchi M, Sugiyasu K. Twisting poly(3-substituted thiophene)s: cyclopolymerization of gemini thiophene monomers through catalyst-transfer polycondensation. Polym J. 2017;49:133–9.

  9. 9.

    Yokota K, Kakuchi T, Taniguchi Y, Takada Y. Synthesis of polymers containing crown lactone units via cyclopolymerization in the presence of alkylaluminium chlorides. Makromol Chem Rapid Commun. 1985;6:155–61.

  10. 10.

    Coluccini C, Metrangolo P, Parachini M, Pasini D, Resnati G, Righetti P. “Push–pull” supramolecular chromophores supported on cyclopolymers. J Polym Sci Part A Polym Chem. 2008;46:5202–13.

  11. 11.

    Terashima T, Kawabe M, Miyabara Y, Yoda H, Sawamoto M. Polymeric pseudo-crown ether for cation recognition via cation template-assisted cyclopolymerization. Nat Commun. 2013;4:2321.

  12. 12.

    Zou L, Liu J, Zhang K, Chen Y, Xi F. Cyclopolymerization of α,ω-heterodifunctional monomers containing styrene and maleimide moieties. J Polym Sci Part A Polym Chem. 2014;52:330–8.

  13. 13.

    Ochiai B, Ootani Y, Endo T. Controlled cyclopolymerization through quantitative 19-membered ring formation. J Am Chem Soc. 2008;130:10832–3.

  14. 14.

    Ochiai B, Shiomi T, Yoshita H. Cyclopolymerization of a bisacrylate through selective formation of a 19-membered ring. Polym J. 2016;48:859–62.

  15. 15.

    Brinker CJ, Scherer GW. sol–gel science. 1st ed. Boston: Academic Press; 1990.

  16. 16.

    Baney RH, Itoh M, Sakakibara A, Suzuki T. Silsesquioxanes. Chem Rev. 1995;95:1409–30.

  17. 17.

    Loy DA, Baugher BM, Baugher CR, Schneider DA, Rahimian K. Substituent effects on the sol–gel chemistry of organotrialkoxysilanes. Chem Mater. 2000;12:3624–32.

  18. 18.

    Yamamoto K, Kanezashi M, Tsuru T, Ohshita J. Preparation of bridged polysilsesquioxane-based membranes containing 1,2,3-triazole moieties for water desalination. Polym J. 2017;49:401–6.

  19. 19.

    Gon M, Tanaka K, Chujo Y. Recent progress in the development of advanced element-block materials. Polym J. 2018;50:109–26.

  20. 20.

    Imoto H, Katoh R, Honda T, Yusa S, Naka K. Self-association behavior of amphiphilic molecules based on incompletely condensed cage silsesquioxanes and poly(ethylene glycol)s. Polym J. 2018;50:337–45.

  21. 21.

    Imoto H. Development of macromolecules and supramolecules based on silicon and arsenic chemistries. Polym J. 2018;50:837–46.

  22. 22.

    Yuasa S, Imoto H, Naka K. Synthesis and properties of hyperbranched polymers by polymerization of an AB3-type incompletely condensed cage silsesquioxane (IC-POSS) monomer. Polym J. 2018;50:879–87.

  23. 23.

    Kaneko Y. Ionic silsesquioxanes: preparation, structure control, characterization, and applications. Polymer. 2018;144:205–24.

  24. 24.

    Choi J, Harcup J, Yee AF, Zhu Q, Laine RM. Organic/inorganic hybrid composites from cubic silsesquioxanes. J Am Chem Soc. 2001;123:11420–30.

  25. 25.

    Kim KM, Chujo Y. Organic–inorganic hybrid gels having functionalized silsesquioxanes. J Mater Chem. 2003;13:1384–91.

  26. 26.

    Yu X, Zhong S, Li X, Tu Y, Yang S, Horn RMV, et al. A giant surfactant of polystyrene-(carboxylic acid-functionalized polyhedral oligomeric silsesquioxane) amphiphile with highly stretched polystyrene tails in micellar assemblies. J Am Chem Soc. 2010;132:16741–4.

  27. 27.

    Yanagie M, Kaneko Y. Preparation of irrefrangible polyacrylamide hybrid hydrogels using water-dispersible cyclotetrasiloxane or polyhedral oligomeric silsesquioxane containing polymerizable groups as cross-linkers. Polym Chem. 2018;9:2302–12.

  28. 28.

    Cordes DB, Lickiss PD, Rataboul F. Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev. 2010;110:2081–173.

  29. 29.

    Kaneko Y, Shoiriki M, Mizumo T. Preparation of cage-like octa(3-aminopropyl)silsesquioxane trifluoromethanesulfonate in higher yield with a shorter reaction time. J Mater Chem. 2012;22:14475–8.

  30. 30.

    Tokunaga T, Shoiriki M, Mizumo T, Kaneko Y. Preparation of low-crystalline POSS containing two types of alkylammonium groups and its optically transparent film. J Mater Chem C. 2014;2:2496–501.

  31. 31.

    Ishii T, Mizumo T, Kaneko Y. Facile preparation of ionic liquid containing silsesquioxane framework. Bull Chem Soc Jpn. 2014;87:155–9.

  32. 32.

    Ishii T, Enoki T, Mizumo T, Ohshita J, Kaneko Y. Preparation of imidazolium-type ionic liquids containing silsesquioxane frameworks and their thermal and ion-conductive properties. RSC Adv. 2015;5:15226–32.

  33. 33.

    Harada A, Koge S, Ohshita J, Kaneko Y. Preparation of a thermally stable room temperature ionic liquid containing cage-like oligosilsesquioxane with two types of side-chain groups. Bull Chem Soc Jpn. 2016;89:1129–35.

  34. 34.

    Hirohara T, Kai T, Ohshita J, Kaneko Y. Preparation of protic ionic liquids containing cyclic oligosiloxane frameworks. RSC Adv. 2017;7:10575–82.

  35. 35.

    Imai K, Kaneko Y. Preparation of ammonium-functionalized polyhedral oligomeric silsesquioxanes with high proportions of cagelike decamer and their facile separation. Inorg Chem. 2017;56:4133–40.

  36. 36.

    Matsumoto T, Kaneko Y. Selective and high-yielding preparation of ammonium-functionalized cage-like octasilsesquioxanes using superacid catalyst in dimethyl sulfoxide. Chem Lett. 2018;47:864–7.

  37. 37.

    Maeda D, Ishii T, Kaneko Y. Effect of lengths of substituents in imidazolium groups on the preparation of imidazolium-salt-type ionic liquids containing polyhedral oligomeric silsesquioxane structures. Bull Chem Soc Jpn. 2018;91:1112–9.

  38. 38.

    Liu J, Kaneko Y. Preparation of polyhedral oligomeric silsesquioxanes containing carboxyl side-chain groups and isolation of a cage-like octamer using clay mineral. Bull Chem Soc Jpn. 2018;91:1120–7.

  39. 39.

    Brown JF Jr, Vogt LH Jr, Katchman A, Eustance JW, Kiser KM, Krantz KW. Double chain polymers of phenylsilsesquioxane. J Am Chem Soc. 1960;82:6194–5.

  40. 40.

    Unno M, Chang S, Matsumoto H. cis-trans-cis-Tetrabromotetramethylcyclotetrasiloxane: a versatile precursor of ladder silsesquioxanes. Bull Chem Soc Jpn. 2005;78:1105–9.

  41. 41.

    Seki H, Kajiwara T, Abe Y, Gunji T. Synthesis and structure of ladder polymethylsilsesquioxanes from sila-functionalized cyclotetrasiloxanes. J Organomet Chem. 2010;695:1363–9.

  42. 42.

    Choi SS, Lee HS, Hwang SS, Choi DH, Baek KY. High photo- and electroluminescence efficiencies of ladder-like structured polysilsesquioxane with carbazole groups. J Mater Chem. 2010;20:9852–4.

  43. 43.

    Ren Z, Sun D, Li H, Fu Q, Ma D, Zhang J, et al. Synthesis of dibenzothiophene-containing ladder polysilsesquioxane as a blue phosphorescent host material. Chem Eur J. 2012;18:4115–23.

  44. 44.

    Wu S, Hayakawa T, Kikuchi R, Grunzinger SJ, Kakimoto M, Oikawa H. Synthesis and characterization of semiaromatic polyimides containing POSS in main chain derived from double-decker-shaped silsesquioxane. Macromolecules. 2007;40:5698–705.

  45. 45.

    Maegawa T, Irie Y, Fueno H, Tanaka K, Naka K. Synthesis and polymerization of a para-disubstituted T8-caged hexaisobutyl-POSS monomer. Chem Lett. 2014;43:1532–4.

  46. 46.

    Maegawa T, Irie Y, Imoto H, Fueno H, Tanaka K, Naka K. para-Bisvinylhexaisobutyl-substituted T8 caged monomer: synthesis and hydrosilylation polymerization. Polym Chem. 2015;6:7500–4.

  47. 47.

    Kaneko Y, Iyi N, Kurashima K, Matsumoto T, Fujita T, Kitamura K. Hexagonal-structured polysiloxane material prepared by sol–gel reaction of aminoalkyltrialkoxysilane without using surfactants. Chem Mater. 2004;16:3417–23.

  48. 48.

    Kaneko Y, Iyi N, Matsumoto T, Kitamura K. Synthesis of rodlike polysiloxane with hexagonal phase by sol–gel reaction of organotrialkoxysilane monomer containing two amino groups. Polymer. 2005;46:1828–33.

  49. 49.

    Kaneko Y, Iyi N. Sol–gel synthesis of rodlike polysilsesquioxanes forming regular higher-ordered nanostructure. Z Krist. 2007;222:656–62.

  50. 50.

    Kaneko Y, Toyodome H, Shoiriki M, Iyi N. Preparation of ionic silsesquioxanes with regular structures and their hybridization. Int J Polym Sci. 2012;684278.

  51. 51.

    Toyodome H, Kaneko Y, Shikinaka K, Iyi N. Preparation of carboxylate group-containing rod-like polysilsesquioxane with hexagonally stacked structure by sol–gel reaction of 2-cyanoethyltriethoxysilane. Polymer. 2012;53:6021–6.

  52. 52.

    Kaneko Y, Toyodome H, Mizumo T, Shikinaka K, Iyi N. Preparation of a sulfo-group-containing rod-like polysilsesquioxane with a hexagonally stacked structure and its proton conductivity. Chem Eur J. 2014;20:9394–9.

  53. 53.

    Harada A, Shikinaka K, Ohshita J, Kaneko Y. Preparation of a one-dimensional soluble polysilsesquioxane containing phosphonic acid side-chain groups and its thermal and proton-conduction properties. Polymer. 2017;121:228–33.

  54. 54.

    Tokunaga T, Koge S, Mizumo T, Ohshita J, Kaneko Y. Facile preparation of a soluble polymer containing polyhedral oligomeric silsesquioxane units in its main chain. Polym Chem. 2015;6:3039–45.

  55. 55.

    Minami Y, Murata K, Watase S, Matsukawa K. Preparation of photo-cured hybrid thin films using zirconia nanoparticles modified with dual site silane coupling agent. J Photopolym Sci Technol. 2014;27:261–2.

  56. 56.

    Ochiai B, Ogihara T, Mashiko M, Endo T. Synthesis of rare-metal absorbing polymer by three-component polyaddition through combination of chemo-selective nucleophilic and radical additions. J Am Chem Soc. 2009;131:1636–7.

  57. 57.

    Nagai D, Yoshida M, Kishi T, Morinaga H, Hara Y, Mori M, et al. A facile and high-recovery material for rare-metals based on a water-soluble polyallylamine with side-chain thiourea groups. Chem Commun. 2013;49:6852–4.

Download references


We acknowledge the support of Prof. Y. Suda, Dr. M. Wakao, and Dr. H. Shinchi of the Graduate School of Science and Engineering, Kagoshima University (Japan) for the MALDI-TOF MS measurements.

Author information

Conflict of interest

The authors declare that they have no conflict of interest.

Correspondence to Yoshiro Kaneko.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark
Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8