Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Lamellar orientation in isotactic polypropylene thin films: a complement study via grazing incidence X-ray diffraction and surface/cross-sectional imaging

Abstract

The crystalline structures of isotactic polypropylene (iPP) thin films were investigated using grazing incident wide-angle X-ray diffraction (GIWAXD), atomic force microscopy (AFM), and transmission electron microscopy (TEM). The out-of-plane (110) reflection split with 99° inclination in the GIWAXD pattern. The film surface was covered with flat-on mother lamellae with orthogonal daughter lamellae. The cross-sectional TEM image and the fast Fourier transform-processed image showed vertically aligned daughter lamellae and cross-hatched lateral mother lamellae. Flat-on lamellae may be preferentially produced at the substrate interface, after which the mother lamellae may yield daughter lamellae from the ac plane to give vertically aligned lamellae. The daughter lamellae yield in-plane lamellae with flat-on alignment from the ac plane, resulting in the global growth of a cross-hatched lamellar structure.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Lotz B, Wittmann JC. The molecular origin of lamellar branching in the α (monoclinic) form of isotactic polypropylene. J Polym Sci Part B Polym Phys. 1986;24:1541–58.

    CAS  Article  Google Scholar 

  2. 2.

    Brückner S, Meille SV, Petraccone V, Pirozzi B. Polymorphism in isotactic polypropylene. Progress Polym Sci. 1991;16:361–404.

    Article  Google Scholar 

  3. 3.

    Meille SV, Brückner S, Porzio W. γ-Isotactic polypropylene. A structure with nonparallel chain axes. Macromolecules. 1990;23:4114–21.

    CAS  Article  Google Scholar 

  4. 4.

    Mileva D, Androsch R, Zhuravlev E, Schick C. Temperature of melting of the mesophase of isotactic polypropylene. Macromolecules. 2009;42:7275–8.

    CAS  Article  Google Scholar 

  5. 5.

    Stocker W, Schumacher M, Graff S, Thierry A, Wittmann J-C, Lotz B. Epitaxial crystallization and AFM investigation of a frustrated polymer structure:  isotactic poly(propylene), β phase. Macromolecules. 1998;31:807–14.

    CAS  Article  Google Scholar 

  6. 6.

    Padden FJ, Keith HD. Mechanism for lamellar branching in isotactic polypropylene. J Appl Phys. 1973;44:1217–23.

    CAS  Article  Google Scholar 

  7. 7.

    Yamada K, Matsumoto S, Tagashira K, Hikosaka M. Isotacticity dependence of spherulitic morphology of isotactic polypropylene. Polymer. 1998;39:5327–33.

    CAS  Article  Google Scholar 

  8. 8.

    Lotz B, Wittmann JC, Lovinger AJ. Structure and morphology of poly(propylenes): a molecular analysis. Polymer. 1996;37:4979–92.

    CAS  Article  Google Scholar 

  9. 9.

    Natta G, Corradini P. Structure and properties of isotactic polypropylene. Il Nuovo Cim (1955–1965). 1960;15:40–51.

    CAS  Article  Google Scholar 

  10. 10.

    Mencik Z. Crystal structure of isotactic polypropylene. J Macromol Sci Part B Phys. 1972;6:101–15.

    CAS  Article  Google Scholar 

  11. 11.

    Frank CW, Rao V, Despotopoulou MM, Pease RFW, Hinsberg WD, Miller RD, et al. Structure in thin and ultrathin spin-cast polymer films. Science. 1996;273:912–5.

    CAS  Article  Google Scholar 

  12. 12.

    Nishino T, Matsumoto T, Nakamae K. Surface structure of isotactic polypropylene by X‐ray diffraction. Polym Eng Sci. 2000;40:336–43.

    CAS  Article  Google Scholar 

  13. 13.

    Cho K, Kim D, Yoon S. Effect of substrate surface energy on transcrystalline growth and its effect on interfacial adhesion of semicrystalline polymers. Macromolecules. 2003;36:7652–60.

    CAS  Article  Google Scholar 

  14. 14.

    Yakabe H, Sasaki S, Sakata O, Takahara A, Kajiyama T. Paracrystalline lattice distortion in the near-surface region of melt-crystallized polyethylene films evaluated by synchrotron-sourced grazing-incidence X-ray diffraction. Macromolecules. 2003;36:5905–7.

    CAS  Article  Google Scholar 

  15. 15.

    Sakai A, Tanaka K, Fujii Y, Nagamura T, Kajiyama T. Structure and thermal molecular motion at surface of semi-crystalline isotactic polypropylene films. Polymer. 2005;46:429–37.

    CAS  Article  Google Scholar 

  16. 16.

    Liu Y-X, Chen E-Q. Polymer crystallization of ultrathin films on solid substrates. Coord Chem Rev. 2010;254:1011–37.

    CAS  Article  Google Scholar 

  17. 17.

    Grozev N, Botiz I, Reiter G. Morphological instabilities of polymer crystals. Eur Phys J E Soft Matter. 2008;27:63–71.

    CAS  Article  Google Scholar 

  18. 18.

    Kikkawa Y, Abe H, Fujita M, Iwata T, Inoue Y, Doi Y. Crystal growth in poly(L‐lactide) thin film revealed by in situ atomic force microscopy. Macromol Chem Phys. 2003;204:1822–31.

    CAS  Article  Google Scholar 

  19. 19.

    Mareau VH, Prud’homme RE. In-situ hot stage atomic force microscopy study of poly(ε-caprolactone) crystal growth in ultrathin Films. Macromolecules. 2005;38:398–408.

    CAS  Article  Google Scholar 

  20. 20.

    Takenaka Y, Miyaji H, Hoshino A, Tracz A, Jeszka JK, Kucinska I. Interface structure of epitaxial polyethylene crystal grown on HOPG and MoS2 substrates. Macromolecules. 2004;37:9667–9.

    CAS  Article  Google Scholar 

  21. 21.

    Liang Y, Zheng M, Park KH, Lee HS. Thickness-dependent crystal orientation in poly(trimethylene 2,6-naphthalate) films studied with GIWAXD and RA-FTIR methods. Polymer. 2008;49:1961–7.

    CAS  Article  Google Scholar 

  22. 22.

    Wang Y, Rafailovich M, Sokolov J, Gersappe D, Araki T, Zou Y, et al. Substrate effect on the melting temperature of thin polyethylene films. Phys Rev Lett. 2006;96:028303.

    CAS  Article  Google Scholar 

  23. 23.

    Asada M, Jiang N, Sendogdular L, Gin P, Wang Y, Endoh MK, et al. Heterogeneous lamellar structures near the polymer/substrate interface. Macromolecules. 2012;45:7098–106.

    CAS  Article  Google Scholar 

  24. 24.

    Sasaki S, Masunaga H, Tajiri H, Inoue K, Okuda H, Noma H, et al. In situ investigation of annealing effect on lamellar stacking structure of polyethylene thin films by synchrotron grazing-incidence small-angle and wide-angle X-ray scattering. J Appl Crystallogr. 2007;40(s1):s642–4.

    CAS  Article  Google Scholar 

  25. 25.

    Wang Y, Ge S, Rafailovich M, Sokolov J, Zou Y, Ade H, et al. Crystallization in the thin and ultrathin films of poly(ethylene−vinyl acetate) and linear low-density polyethylene. Macromolecules. 2004;37:3319–27.

    CAS  Article  Google Scholar 

  26. 26.

    Hu Z, Huang H, Zhang F, Du B, He T. Thickness-dependent molecular chain and lamellar crystal orientation in ultrathin poly(di-n-hexylsilane) films. Langmuir. 2004;20:3271–7.

    CAS  Article  Google Scholar 

  27. 27.

    Rueda DR, Hernández JJ, García-Gutiérrez MC, Ezquerra TA, Soccio M, Lotti N, et al. Flat-on lamellae in spin-coated, stable films of poly(propylene azelate). Langmuir. 2010;26:17540–5.

    CAS  Article  Google Scholar 

  28. 28.

    Maillard D, Prud’homme RE. Crystallization of ultrathin films of polylactides: from chain chirality to lamella curvature and twisting. Macromolecules. 2008;41:1705–12.

    CAS  Article  Google Scholar 

  29. 29.

    Wang Y, Chan C-M, Ng K-M, Li L. What controls the lamellar orientation at the surface of polymer films during crystallization? Macromolecules. 2008;41:2548–53.

    CAS  Article  Google Scholar 

  30. 30.

    Sun X, Guo L, Sato H, Ozaki Y, Yan S, Takahashi I. A study on the crystallization behavior of poly(β-hydroxybutyrate) thin films on Si wafers. Polymer. 2011;52:3865–70.

    CAS  Article  Google Scholar 

  31. 31.

    Yang J-P, Liao Q, Zhou J-J, Jiang X, Wang X-H, Zhang Y, et al. What determines the lamellar orientation on substrates? Macromolecules. 2011;44:3511–6.

    CAS  Article  Google Scholar 

  32. 32.

    Zhou J-J, Liu J-G, Yan S-K, Dong J-Y, Li L, Chan C-M, et al. Atomic force microscopy study of the lamellar growth of isotactic polypropylene. Polymer. 2005;46:4077–87.

    CAS  Article  Google Scholar 

  33. 33.

    Wang X, Hou W, Zhou J, Li L, Li Y, Chan C-M. Melting behavior of lamellae of isotactic polypropylene studied using hot-stage atomic force microscopy. Colloid Polym Sci. 2007;285:449–55.

    CAS  Article  Google Scholar 

  34. 34.

    Padden FJ, Keith HD. Crystallization in thin films of isotactic polypropylene. J Appl Phys. 1966;37:4013–20.

    CAS  Article  Google Scholar 

  35. 35.

    Zhang B, Chen J, Liu B, Wang B, Shen C, Reiter R, et al. Morphological changes of isotactic polypropylene crystals grown in thin films. Macromolecules. 2017;50:6210–7.

    CAS  Article  Google Scholar 

  36. 36.

    Koga T, Morita M, Ishida H, Yakabe H, Sasaki S, Sakata O, et al. Dependence of the molecular aggregation state of octadecylsiloxane monolayers on preparation methods. Langmuir. 2005;21:905–10.

    CAS  Article  Google Scholar 

  37. 37.

    Owens DK, Wendt R. Estimation of the surface free energy of polymers. J Appl Polym Sci. 1969;13:1741–7.

    CAS  Article  Google Scholar 

  38. 38.

    Masunaga H, Ogawa H, Takano T, Sasaki S, Goto S, Tanaka T, et al. Multipurpose soft-material SAXS/WAXS/GISAXS beamline at SPring-8. Polym J. 2011;43:471–7.

    CAS  Article  Google Scholar 

  39. 39.

    Ogawa H, Masunaga H, Sasaki S, Goto S, Tanaka T, Seike T, et al. Experimental station for multiscale surface structural analyses of soft-material films at SPring-8 via a GISWAX/GIXD/XR-integrated system. Polym J. 2013;45:109–16.

    CAS  Article  Google Scholar 

  40. 40.

    Hatsui T, Graafsma H. X-ray imaging detectors for synchrotron and XFEL sources. IUCrJ. 2015;2:371–83.

    CAS  Article  Google Scholar 

  41. 41.

    Giannuzzi LA, Stevie FA. A review of focused ion beam milling techniques for TEM specimen preparation. Micron. 1999;30:197–204.

    Article  Google Scholar 

  42. 42.

    Norton DR, Keller A. The spherulitic and lamellar morphology of melt-crystallized isotactic polypropylene. Polymer. 1985;26:704–16.

    CAS  Article  Google Scholar 

  43. 43.

    Yamada K, Kajioka H, Nozaki K, Toda A. Morphology and growth of single crystals of isotactic polypropylene from the melt. J Macromol Sci Part B Phys. 2010;50:236–47.

    Article  Google Scholar 

  44. 44.

    Clark EJ, Hoffman JD. Regime III crystallization in polypropylene. Macromolecules. 1984;17:878–85.

    CAS  Article  Google Scholar 

  45. 45.

    Roe R-J. Surface tension of polymer liquids. J Phys Chem. 1968;72:2013–7.

    CAS  Article  Google Scholar 

  46. 46.

    Theodorou DN. Variable-density model of polymer melt surfaces: structure and surface tension. Macromolecules. 1989;22:4578–89.

    CAS  Article  Google Scholar 

  47. 47.

    Beers KL, Douglas JF, Amis EJ, Karim A. Combinatorial measurements of crystallization growth rate and morphology in thin films of isotactic polystyrene. Langmuir. 2003;19:3935–40.

    CAS  Article  Google Scholar 

  48. 48.

    Binsbergen FL, de Lange BGM. Morphology of polypropylene crystallized from the melt. Polymer. 1968;9:23–40.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Photon and Quantum Basic Research Coordinated Development Program of MEXT. The GIWAXD measurements were carried out at the first hutch of SPring-8 BL03XU constructed by the Consortium of Advanced Softmaterial Beamline (FSBL) (Proposal Nos. 2013A7218, 2013B7266, 2015A7216, 2015B7267, 2016A7217, and 2017B7267).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kiminori Uchida.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Uchida, K., Mita, K., Higaki, Y. et al. Lamellar orientation in isotactic polypropylene thin films: a complement study via grazing incidence X-ray diffraction and surface/cross-sectional imaging. Polym J 51, 183–188 (2019). https://doi.org/10.1038/s41428-018-0138-3

Download citation

Further reading

Search

Quick links