Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fabrication and characterization of elastomeric semiconductive thiophene polymers by peroxide crosslinking

Abstract

In this study, semiconductive elastomers composed of homopolythiophene with disiloxane moieties were developed. The crosslinked molecular structure in the polythiophene elastomers was introduced by dicumyl peroxide, one of the typical peroxide crosslinking reagents. The elastomers were produced through a hot-pressing process above the melting point of the polythiophene. Stress–strain curves that included tensile tests and cycle loading–unloading tests defined the crosslinked polythiophenes as elastomers. Their electrical conductivities were evaluated by two-point measurements under nondeformation and uniaxial deformation states. The results indicated that the concentration of crosslinking reagents greatly influenced the mechanical and electrical properties of crosslinking polymers. With the addition of the crosslinking reagent in concentrations from 2.5 phr to 10.0 phr, elongation at break decreased largely from 95% to 51%, while excellent elastic recoveries were observed. In the electrical resistivity measurements, all the crosslinking polymers possessed high stability of electrical properties against elongation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Dang MT, Hirsch L, Wantz G, Wuest JD. Controlling the morphology and performance of bulk heterojunctions in solar cells. Lessons learned from the benchmark poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester system. Chem Rev. 2013;113:3734–65.

    CAS  Article  Google Scholar 

  2. 2.

    Malik S, Nandi AK. Crystallization mechanism of regioregular poly(3-alkyl thiophene)s. J Polym Sci Part B Polym Phys. 2002;40:2073–85.

    CAS  Article  Google Scholar 

  3. 3.

    Ahmed E, Kim FS, Xin H, Jenekhe SA. Benzobisthiazole–thiophene copolymer semiconductors: synthesis, enhanced stability, field-effect transistors, and efficient solar cells. Macromolecules. 2009;42:8615–8.

    CAS  Article  Google Scholar 

  4. 4.

    Yan H, Huang Y. Polymer composites of carbon nitride and poly(3-hexylthiophene) to achieve enhanced hydrogen production from water under visible light. Chem Commun. 2011;47:4168–70.

    CAS  Article  Google Scholar 

  5. 5.

    Bao Z, Dodabalapur A, Lovinger AJ. Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility. Appl Phys Lett. 1996;69:4108–10.

    CAS  Article  Google Scholar 

  6. 6.

    Li G, Zhu R, Yang Y. Polymer solar cells. Nat Phot. 2012;6:153–61.

    CAS  Article  Google Scholar 

  7. 7.

    Oschmann B, Park J, Kim C, Char K, Sung YE, Zentel R. Copolymerization of polythiophene and sulfur to improve the electrochemical performance in lithium-sulfur batteries. Chem Mater. 2015;27:7011–7.

    CAS  Article  Google Scholar 

  8. 8.

    Raja M, Lloyd GCR, Sedghi N, Eccleston W, Di Lucrezia R, Higgins SJ. Conduction processes in conjugated, highly regio-regular, high molecular mass, poly(3-hexylthiophene) thin-film transistors. J Appl Phys. 2002;92:1441–5.

    CAS  Article  Google Scholar 

  9. 9.

    Mallik AB, Locklin J, Mannsfeld SCB, Reese C, Roberts ME, Senatore ML et al. Organic field-effect transistors. Adv Mater. 1998;4095:159.

    Google Scholar 

  10. 10.

    Brabec CJ, Sariciftci NS, Hummelen JC. Plastic solar cells. Adv Funct Mater. 2001;11:15–26.

    CAS  Article  Google Scholar 

  11. 11.

    Coakley KM, McGehee MD. Conjugated polymer photovoltaic cells. Chem Mater. 2004;16:4533–42.

    CAS  Article  Google Scholar 

  12. 12.

    Lipomi DJ, Tee BCK, Vosgueritchian M, Bao Z. Stretchable organic solar cells. Adv Mater. 2011;23:1771–5.

    CAS  Article  Google Scholar 

  13. 13.

    Leterrier Y, Médico L, Demarco F, Månson JAE, Betz U, Escolà MF et al. Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays. Thin Solid Films. 2004;460:156–66.

    CAS  Article  Google Scholar 

  14. 14.

    Zeng W, Shu L, Li Q, Chen S, Wang F, Tao XM. Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv Mater. 2014;26:5310–36.

    CAS  Article  Google Scholar 

  15. 15.

    Cho CK, Hwang WJ, Eun K, Choa SH, Na SI, Kim HK. Mechanical flexibility of transparent PEDOT:PSS electrodes prepared by gravure printing for flexible organic solar cells. Sol Energy Mater Sol Cells. 2011;95:3269–75.

    CAS  Article  Google Scholar 

  16. 16.

    Oliva-Avilés AI, Avilés F, Sosa V. Electrical and piezoresistive properties of multi-walled carbon nanotube/polymer composite films aligned by an electric field. Carbon. 2011;49:2989–97.

    Article  Google Scholar 

  17. 17.

    Na S-I, Kim S-S, Jo J, Kim D-Y. Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes. Adv Mater. 2008;20:4061–7.

    CAS  Article  Google Scholar 

  18. 18.

    Rowell MW, Topinka MA, McGehee MD, Prall HJ, Dennler G, Sariciftci NS et al. Organic solar cells with carbon nanotube network electrodes. Appl Phys Lett. 2006;88:2–5.

    Article  Google Scholar 

  19. 19.

    Karttunen M, Ruuskanen P, Pitkänen V, Albers WM. Electrically conductive metal polymer nanocomposites for electronics applications. J Electron Mater. 2008;37:951–4.

    CAS  Article  Google Scholar 

  20. 20.

    Mi HY, Li Z, Turng LS, Sun Y, Gong S. Silver nanowire/thermoplastic polyurethane elastomer nanocomposites: thermal, mechanical, and dielectric properties. Mater Des. 2014;56:398–404.

    CAS  Article  Google Scholar 

  21. 21.

    Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I. Highly stretchable and sensitive strain sensor based on silver-elastomer nanocomposite. ACS Nano. 2014;8:5154–63.

    CAS  Article  Google Scholar 

  22. 22.

    Larmagnac A, Eggenberger S, Janossy H, Vörös J. Stretchable electronics based on Ag-PDMS composites. Sci Rep. 2014;4:1–7.

    Google Scholar 

  23. 23.

    Liang J, Li L, Chen D, Hajagos T, Ren Z, Chou SY, et al. Intrinsically stretchable and transparent thin-film transistors based on printable silver nanowires, carbon nanotubes and an elastomeric dielectric. Nat Commun. 2015;6:7647.

  24. 24.

    Rodriquez D, Kim J-H, Root SE, Fei Z, Boufflet P, Heeney M et al. Comparison of methods for determining the mechanical properties of semiconducting polymer films for stretchable electronics. ACS Appl Mater Interfaces. 2017;9:8855–62.

    CAS  Article  Google Scholar 

  25. 25.

    Le VT, Kim H, Ghosh A, Kim J, Chang J, Vu QA et al. Coaxial fiber supercapacitor using all-carbon material electrodes. ACS Nano. 2013;7:5940–7.

    CAS  Article  Google Scholar 

  26. 26.

    Meng Y, Zhao Y, Hu C, Cheng H, Hu Y, Zhang Z et al. All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv Mater. 2013;25:2326–31.

    CAS  Article  Google Scholar 

  27. 27.

    Tamba S, Fuji K, Meguro H, Okamoto S, Tendo T, Komobuchi R et al. Synthesis of high-molecular-weight head-to-tail-type poly(3-substituted-thiophene)s by cross-coupling polycondensation with [CpNiCl(NHC)] as a catalyst. Chem Lett. 2013;42:281–3.

    CAS  Article  Google Scholar 

  28. 28.

    Fujita K, Sumino Y, Ide K, Tamba S, Shono K, Shen J et al. Synthesis of poly(3-substituted thiophene)s of remarkably high solubility in hydrocarbon via nickel-catalyzed deprotonative cross-coupling polycondensation. Macromolecules. 2016;49:1259–69.

    CAS  Article  Google Scholar 

  29. 29.

    Jian S, Keisuke F, Takuya M, Chizuru H, Masahiro M, Kenji I et al. Mechanical, thermal, and electrical properties of flexible polythiophene with disiloxane side chains. Macromol Chem Phys. 2017;218:1700197.

    Article  Google Scholar 

  30. 30.

    Han AR, Lee J, Lee HR, Lee J, Kang SH, Ahn H et al. Siloxane side chains: a universal tool for practical applications of organic field-effect transistors. Macromolecules. 2016;49:3739–48.

    CAS  Article  Google Scholar 

  31. 31.

    Lee EK, Park CH, Lee J, Lee HR, Yang C, Oh JH. Chemically robust ambipolar organic transistor array directly patterned by photolithography. Adv Mater. 2017;29:1605282.

    Article  Google Scholar 

  32. 32.

    Lee J, Han AR, Kim J, Kim Y, Oh JH, Yang C. Solution-processable ambipolar diketopyrrolopyrrole-selenophene polymer with unprecedentedly high hole and electron mobilities. J Am Chem Soc. 2012;134:20713–21.

    CAS  Article  Google Scholar 

  33. 33.

    Lee J, Han AR, Yu H, Shin TJ, Yang C, Oh JH. Boosting the ambipolar performance of solution-processable polymer semiconductors via hybrid side-chain engineering. J Am Chem Soc. 2013;135:9540–7.

    CAS  Article  Google Scholar 

  34. 34.

    Suyama S, Ishigaki H, Watanabe Y, Nakamura T. Crosslinking of polyethylene by dicumyl peroxide in the presence of 2,4-diphenyl-4-methyl-1-pentene. Polym J. 1995;27:371–5.

    CAS  Article  Google Scholar 

  35. 35.

    Hu X. Nickel-catalyzed cross coupling of non-activated alkyl halides: a mechanistic perspective. Chem Sci. 2011;2:1867.

    CAS  Article  Google Scholar 

  36. 36.

    Görrn P, Cao W, Wagner S. Isotropically stretchable gold conductors on elastomeric substrates. Soft Matter. 2011;7:7177–80.

    Article  Google Scholar 

  37. 37.

    Tait JG, Worfolk BJ, Maloney SA, Hauger TC, Elias AL, Buriak JM et al. Spray coated high-conductivity PEDOT:PSS transparent electrodes for stretchable and mechanically-robust organic solar cells. Sol Energy Mater Sol Cells. 2013;110:98–106.

    CAS  Article  Google Scholar 

  38. 38.

    Flandin L, Chang A, Nazarenko S, Hiltner A, Baer E. Effect of strain on the properties of an ethylene-octene elastomer with conductive carbon fillers. J Appl Polym Sci. 2000;76:894–905.

    CAS  Article  Google Scholar 

Download references

Funding

This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas “New Polymeric Materials Based on Element-Blocks (No.2401)” (24102009) of the Ministry of Education, Culture, Sports, Science, and Technology, Japan. The synchrotron radiation experiments were performed at the BL03XU of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal No. 2015A7210, 2015B7260, 2016A7210, and 2016B7260).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Takashi Nishino.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shen, J., Sugimoto, I., Matsumoto, T. et al. Fabrication and characterization of elastomeric semiconductive thiophene polymers by peroxide crosslinking. Polym J 51, 257–263 (2019). https://doi.org/10.1038/s41428-018-0137-4

Download citation

Further reading

Search

Quick links