Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Aggregation States of Poly(4-methylpentene-1) at a Solid Interface

Abstract

A thin film of poly(4-methylpentene-1) (P4MP1) was prepared on a quartz substrate, which was a model system of an interface in filler-reinforced semicrystalline polymer composites. Grazing-incidence wide-angle X-ray diffraction measurements revealed that P4MP1 in the thin film after isothermal crystallization formed a Form I crystal polymorph composed of a tetragonal unit cell with a 72 helix, in which the chain axis was oriented along the direction parallel to the quartz interface. Combining sum-frequency generation vibrational spectroscopy with molecular dynamics simulation enabled us to gain access to the local conformation of P4MP1 chains at the quartz interface and the changes that occurred with isothermal crystallization. Finally, the way in which the initial chain orientation at the substrate interface impacted the crystalline structure in the thin film was discussed.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Serizawa H, Ito M, Kanamoto T, Tanaka K, Nomura A. Structural-changes during mechanical mixing in carbon black-natural rubber systems studied by pulsed NMR. Polym J. 1982;14:149–54.

    Article  CAS  Google Scholar 

  2. Xu CY, Agari Y, Matsuo M. Mechanical and electric properties of ultra-high molecular weight polyethylene and carbon black particle blends. Polym J. 1998;30:372–80.

    Article  CAS  Google Scholar 

  3. Du ML, Guo BC, Liu MX, Jia DM. Formation of reinforcing inorganic network in polymer via hydrogen bonding self-assembly process. Polym J. 2007;39:208–12.

    Article  CAS  Google Scholar 

  4. Fu SY, Feng XQ, Lauke B, Mai YW. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos Part B-Eng. 2008;39:933–61.

    Article  Google Scholar 

  5. Paul DR, Robeson LM. Polymer nanotechnology: Nanocomposites. Polym (Guildf). 2008;49:3187–204.

    Article  CAS  Google Scholar 

  6. Zou H, Wu SS, Shen J. Polymer/silica nanocomposites: Preparation, characterization, properties, and applications. Chem Rev. 2008;108:3893–957.

    Article  CAS  Google Scholar 

  7. Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta JM, Dubois P. New prospects in flame retardant polymer materials: From fundamentals to nanocomposites. Mater Sci Eng R-Rep. 2009;63:100–25.

    Article  Google Scholar 

  8. Lei YD, Tang ZH, Guo BC, Jia DM. SBR/silica composites modified by a polymerizable protic ionic liquid. Polym J. 2010;42:555–61.

    Article  CAS  Google Scholar 

  9. Kato M, Usuki A, Hasegawa N, Okamoto H, Kawasumi M. Development and applications of polyolefin- and rubber-clay nanocomposites. Polym J. 2011;43:583–93.

    Article  CAS  Google Scholar 

  10. Peng B, Wu H, Bao WT, Guo SY, Chen Y, Huang H, et al. Effects of ultrasound on the morphology and properties of propylene-based plastomer/nanosilica composites. Polym J. 2011;43:91–6.

    Article  CAS  Google Scholar 

  11. Liaw WC, Cheng YL, Liao YS, Chen CS, Lai SM. Complementary functionality of SiO2 and TiO2 in polyimide/silica-titania ternary hybrid nanocomposites. Polym J. 2011;43:249–57.

    Article  CAS  Google Scholar 

  12. Morimune S, Nishino T, Goto T. Poly(vinyl alcohol)/graphene oxide nanocomposites prepared by a simple eco-process. Polym J. 2012;44:1056–63.

    Article  CAS  Google Scholar 

  13. Lin CY, Kuo DH, Sie FR, Cheng JY, Liou GS. Preparation and characterization of organosoluble polyimide/BaTiO3 composite films with mechanical- and chemical-treated ceramic fillers. Polym J. 2012;44:1131–7.

    Article  CAS  Google Scholar 

  14. Fiorentino B, Fulchiron R, Duchet-Rumeau J, Bounor-Legaré V, Majesté J-C. Controlled shear-induced molecular orientation and crystallization in polypropylene/talc microcomposites – effects of the talc nature. Polym (Guildf). 2013;54:2764–75.

    Article  CAS  Google Scholar 

  15. Ito A, Yasuda T, Ma XF, Watanabe M. Sulfonated polyimide/ionic liquid composite membranes for carbon dioxide separation. Polym J. 2017;49:671–6.

    Article  CAS  Google Scholar 

  16. Joseph N, Varghese J, Sebastian MT. In situ polymerized polyaniline nanofiber-based functional cotton and nylon fabrics as millimeter-wave absorbers. Polym J. 2017;49:391–9.

    Article  CAS  Google Scholar 

  17. Sivasubramanian G, Hariharasubramanian K, Deivanayagam P, Ramaswamy J. High-performance SPEEK/SWCNT/fly ash polymer electrolyte nanocomposite membranes for fuel cell applications. Polym J. 2017;49:703–9.

    Article  CAS  Google Scholar 

  18. Smith GN, Hallett JE, Joseph P, Tretsiakova-McNally S, Zhang T, Blum FD, et al. Structural studies of thermally stable, combustion-resistant polymer composites. Polym J. 2017;49:711–9.

    Article  CAS  Google Scholar 

  19. Soyama M, Iji M. Improving mechanical properties of cardanol-bonded cellulose diacetate composites by adding polyester resins and glass fiber. Polym J. 2017;49:503–9.

    Article  CAS  Google Scholar 

  20. Yao JY, Zhang SJ, Lim LT, Chen X. Investigation of isothiocyanate release from electrospun modified poly(L-lactic acid)/mustard powder composite fibers. Polym J. 2017;49:449–56.

    Article  CAS  Google Scholar 

  21. Zhang PP, Bin YZ, Zhang R, Matsuo M. Average gap distance between adjacent conductive fillers in polyimide matrix calculated using impedance extrapolated to zero frequency in terms of a thermal fluctuation-induced tunneling effect. Polym J. 2017;49:839–50.

    Article  CAS  Google Scholar 

  22. Lu MZ, Huang S, Chen S, Ju Q, Xiao M, Peng XH, et al. Transparent and super-gas-barrier PET film with surface coated by a polyelectrolyte and Borax. Polym J. 2018;50:239–50.

    Article  CAS  Google Scholar 

  23. Matsuura K, Matsuda Y, Tasaka S. Metastable interface formation in isotactic poly(methyl methacrylate)/alumina nanoparticle mixtures. Polym J. 2018;50:375–80.

    Article  CAS  Google Scholar 

  24. Sakai H, Kuroda K, Muroyama S, Tsukegi T, Kakuchi R, Takada K, et al. Alkylated alkali lignin for compatibilizing agents of carbon fiber-reinforced plastics with polypropylene. Polym J. 2018;50:281–4.

    Article  CAS  Google Scholar 

  25. Sakai R, Teramoto Y, Nishio Y. Producing a magnetically anisotropic soft material: Synthesis of iron oxide nanoparticles in a carrageenan/PVA matrix and stretching of the hybrid gelatinous bulk. Polym J. 2018;50:251–60.

    Article  CAS  Google Scholar 

  26. Tajima T, Tanaka T, Miyake H, Kim IY, Ohtsuki C, Takaguchi Y. Apatite coating on dendrimer-modified buckypaper and the formation of nanoapatite on MWCNTs. Polym J. 2018;50:911–7.

    Article  CAS  Google Scholar 

  27. Tatum WK, Luscombe CK. Pi-conjugated polymer nanowires: Advances and perspectives toward effective commercial implementation. Polym J. 2018;50:659–69.

    Article  CAS  Google Scholar 

  28. Yamamoto T, Norikane Y, Akiyama H. Photochemical liquefaction and softening in molecular materials, polymers, and related compounds. Polym J. 2018;50:551–62.

    Article  CAS  Google Scholar 

  29. Chan-Seok P, Ki-Jun L, Jae-Do N, Seong-Woo K. Crystallization kinetics of glass fiber reinforced PBT composites. J Appl Polym Sci. 2000;78:576–85.

    Article  Google Scholar 

  30. Okada K, Watanabe K, Urushihara T, Toda A, Hikosaka M. Role of epitaxy of nucleating agent (Na) in nucleation mechanism of polymers. Polym (Guildf). 2007;48:401–8.

    Article  CAS  Google Scholar 

  31. Pan PP, Liang ZC, Cao A, Inoue Y. Layered metal phosphonate reinforced poly(L-lactide) composites with a highly enhanced crystallization rate. ACS Appl Mater Interfaces. 2009;1:402–11.

    Article  CAS  Google Scholar 

  32. Wang C, Liu CR. Transcrystallization of polypropylene composites: Nucleating ability of fibres. Polym (Guildf). 1999;40:289–98.

    Article  Google Scholar 

  33. Assouline E, Pohl S, Fulchiron R, Gérard JF, Lustiger A, Wagner HD, et al. The kinetics of α and β transcrystallization in fibre-reinforced polypropylene. Polym (Guildf). 2000;41:7843–54.

    Article  CAS  Google Scholar 

  34. Huo H, Jiang S, An L, Feng J. Influence of shear on crystallization behavior of the β phase in isotactic polypropylene with β-nucleating agent. Macromolecules. 2004;37:2478–83.

    Article  CAS  Google Scholar 

  35. Zhu XD, Suhr H, Shen YR. Surface vibrational spectroscopy by infrared-visible sum frequency generation. Phys Rev B. 1987;35:3047–50.

    Article  CAS  Google Scholar 

  36. Shen YR. Surface-properties probed by 2nd-harmonic and sum-frequency generation. Nature. 1989;337:519–25.

    Article  CAS  Google Scholar 

  37. Hirose C, Akamatsu N, Domen K. Formulas for the analysis of surface sum-frequency generation spectrum by CH stretching modes of methyl and methylene groups. J Chem Phys. 1992;96:997–1004.

    Article  CAS  Google Scholar 

  38. Chen Z, Shen YR, Somorjai GA. Studies of polymer surfaces by sum frequency generation vibrational spectroscopy. Annu Rev Phys Chem. 2002;53:437–65.

    Article  CAS  Google Scholar 

  39. Tateishi Y, Kai N, Noguchi H, Uosaki K, Nagamura T, Tanaka K. Local conformation of poly(methyl methacrylate) at nitrogen and water interfaces. Polym Chem. 2010;1:303–11.

    Article  CAS  Google Scholar 

  40. Horinouchi A, Fujii Y, Yamada NL, Tanaka K. Surface reorganization of thin poly(methyl methacrylate) films induced by water. Chem Lett. 2010;39:810–1.

    Article  CAS  Google Scholar 

  41. Horinouchi A, Atarashi H, Fujii Y, Tanaka K. Dynamics of water-induced surface reorganization in poly(methyl methacrylate) films. Macromolecules. 2012;45:4638–42.

    Article  CAS  Google Scholar 

  42. Tsuruta H, Fujii Y, Kai N, Kataoka H, Ishizone T, Doi M, et al. Local conformation and relaxation of polystyrene at substrate interface. Macromolecules. 2012;45:4643–9.

    Article  CAS  Google Scholar 

  43. Inutsuka M, Horinouchi A, Tanaka K. Aggregation states of polymers at hydrophobic and hydrophilic solid interfaces. ACS Macro Lett. 2015;4:1174–8.

    Article  CAS  Google Scholar 

  44. Shimomura S, Inutsuka M, Tajima K, Nabika M, Moritomi S, Matsuno H, et al. Stabilization of polystyrene thin films by introduction of a functional end group. Polym J. 2016;48:949–53.

    Article  CAS  Google Scholar 

  45. Sen M, Jiang N, Cheung J, Endoh MK, Koge T, Kawaguchi D, et al. Flattening process of polymer chains irreversibly adsorbed on a solid. ACS Macro Lett. 2016;5:504–8.

    Article  CAS  Google Scholar 

  46. Sugimoto S, Inutsuka M, Kawaguchi D, Tanaka K. Reorientation kinetics of local conformation of polyisoprene at substrate interface. ACS Macro Lett. 2018;7:85–9.

    Article  CAS  Google Scholar 

  47. Zuo B, Inutsuka M, Kawaguchi D, Wang X, Tanaka K. Conformational relaxation of poly(styrene-co-butadiene) chains at substrate interface in spin-coated and solvent-cast films. Macromolecules. 2018;51:2180–6.

    Article  CAS  Google Scholar 

  48. Wallace WE, Vanzanten JH, Wu WL. Influence of an impenetrable interface on a polymer glass-transition temperature. Phys Rev E. 1995;52:R3329–32.

    Article  CAS  Google Scholar 

  49. Montes H, Lequeux F, Berriot J. Influence of the glass transition temperature gradient on the nonlinear viscoelastic behavior in reinforced elastomers. Macromolecules. 2003;36:8107–18.

    Article  CAS  Google Scholar 

  50. Tanaka K, Tateishi Y, Okada Y, Nagamura T, Doi M, Morita H. Interfacial mobility of polymers on inorganic solids. J Phys Chem B. 2009;113:4571–7.

    Article  CAS  Google Scholar 

  51. Yang C, Ishimoto K, Matsuura S, Koyasu N, Takahashi I. Depth-dependent inhomogeneous characteristics in supported glassy polystyrene films revealed by ultra-low X-ray reflectivity measurements. Polym J. 2014;46:873–9.

    Article  CAS  Google Scholar 

  52. Nguyen HK, Inutsuka M, Kawaguchi D, Tanaka K. Depth-resolved local conformation and thermal relaxation of polystyrene near substrate interface. J Chem Phys. 2017;146:203313.

    Article  Google Scholar 

  53. Ogawa Y, Lee CM, Nishiyama Y, Kim SH. Absence of sum frequency generation in support of orthorhombic symmetry of α-chitin. Macromolecules. 2016;49:7025–31.

    Article  CAS  Google Scholar 

  54. Lee CM, Mohamed NMA, Watts HD, Kubicki JD, Kim SH. Sum-frequency-generation vibration spectroscopy and density functional theory calculations with dispersion corrections (DFT-D2) for cellulose Iα and Iβ. J Phys Chem B. 2013;117:6681–92.

    Article  CAS  Google Scholar 

  55. Rocha-Mendoza I, Yankelevich DR, Wang M, Reiser KM, Frank CW, Knoesen A. Sum frequency vibrational spectroscopy: The molecular origins of the optical second-order nonlinearity of collagen. Biophys J. 2007;93:4433–44.

    Article  CAS  Google Scholar 

  56. Johnson CM, Sugiharto AB, Roke S. Surface and bulk structure of poly-(lactic acid) films studied by vibrational sum frequency generation spectroscopy. Chem Phys Lett. 2007;449:191–5.

    Article  CAS  Google Scholar 

  57. Kusanagi H, Takase M, Chatani Y, Tadokoro H. Crystal structure of isotactic poly(4-methyl-1-pentene). J Polym Sci Polym Phys. 1978;16:131–42.

    Article  CAS  Google Scholar 

  58. Masunaga H, Ogawa H, Takano T, Sasaki S, Goto S, Tanaka T, et al. Multipurpose soft-material SAXS/WAXS/GISAXS beamline at SPring-8. Polym J. 2011;43:471–7.

    Article  CAS  Google Scholar 

  59. Ogawa H, Masunaga H, Sasaki S, Goto S, Tanaka T, Seike T, et al. Experimental station for multiscale surface structural analyses of soft-material films at SPring-8 via a GISWAX/GIXD/XR-integrated system. Polym J. 2013;45:109–16.

    Article  CAS  Google Scholar 

  60. Sun H, Mumby SJ, Maple JR, Hagler AT. An ab initio cff93 all-atom force field for polycarbonates. J Am Chem Soc. 1994;116:2978–87.

    Article  CAS  Google Scholar 

  61. Heinz H, Lin T-J, Kishore Mishra R, Emami FS. Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: The interface force field. Langmuir. 2013;29:1754–65.

    Article  CAS  Google Scholar 

  62. Takayanagi M, Kawasaki N. Mechanical relaxation of poly-4-methyl-pentene-1 at cryogenic temperatures. J Macromol Sci Phys B. 1967;1:741–58.

    Article  CAS  Google Scholar 

  63. Hasegawa R, Tanabe Y, Kobayashi M, Tadokoro H, Sawaoka A, Kawai N. Structural studies of pressure-crystallized polymers. I. Heat treatment of oriented polymers under high pressure. J Polym Sci Polym Phys. 1970;8:1073–87.

    Article  CAS  Google Scholar 

  64. De Rosa C, Borriello A, Venditto V, Corradini P. Crystal structure of form III and the polymorphism of isotactic poly(4-methylpentene-1). Macromolecules. 1994;27:3864–8.

    Article  Google Scholar 

  65. De Rosa C. Chain conformation of form iv of isotactic poly(4-methyl-1-pentene). Macromolecules. 1999;32:935–8.

    Article  Google Scholar 

  66. De Rosa C. Crystal structure of form ii of isotactic poly(4-methyl-1-pentene). Macromolecules. 2003;36:6087–94.

    Article  Google Scholar 

  67. Mita K, Okumura H, Kimura K, Isaki T, Takenaka M, Kanaya T. Simultaneous small- and wide-angle X-ray scattering studies on the crystallization dynamics of poly(4-methylpentene-1) from melt. Polym J. 2012;45:79–86.

    Article  Google Scholar 

  68. James Jebaseelan Samuel E, Mohan S. FTIR and FT raman spectra and analysis of poly(4-methyl-1-pentene). Spectrochim Acta A. 2004;60:19–24.

    Article  Google Scholar 

  69. Ji N, Shen YR. Sum frequency vibrational spectroscopy of leucine molecules adsorbed at air-water interface. J Chem Phys. 2004;120:7107–12.

    Article  CAS  Google Scholar 

  70. Kataoka S, Cremer PS. Probing molecular structure at interfaces for comparison with bulk solution behavior: Water/2-propanol mixtures monitored by vibrational sum frequency spectroscopy. J Am Chem Soc. 2006;128:5516–22.

    Article  CAS  Google Scholar 

  71. Zhang C, Chen Z. Probing molecular structures of poly(dimethylsiloxane) at buried interfaces in situ. J Phys Chem C. 2013;117:3903–14.

    Article  CAS  Google Scholar 

  72. Harp GP, Rangwalla H, Yeganeh MS, Dhinojwala A. Infrared-visible sum frequency generation spectroscopic study of molecular orientation at polystyrene/comb-polymer interfaces. J Am Chem Soc. 2003;125:11283–90.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the Photon and Quantum Basic Research Coordinated Development Program, as well as JSPS KAKENHI for Scientific Research (A) (No. JP15H02183) (KT) and JSPS KAKENHI for Scientific Research (B) (No. JP17H03118) (DK) from the Ministry of Education, Culture, Sports, Science and Technology, Japan. GIWAXD measurements were carried out at BL03XU at SPring-8, constructed by the Consortium of the Advanced Softmaterial Beamline (FSBL) (Proposal No. 2016A7217).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daisuke Kawaguchi or Keiji Tanaka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, K., Kawaguchi, D., Sasahara, K. et al. Aggregation States of Poly(4-methylpentene-1) at a Solid Interface. Polym J 51, 247–255 (2019). https://doi.org/10.1038/s41428-018-0134-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-018-0134-7

This article is cited by

Search

Quick links