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Abstract
The synthesis of bis(diethylamido){di(3-methylindol-2-yl)phenylmethane}titanium (1) was achieved in high yield (85%) by
the treatment of 2,2′-di(3-methylindolyl)phenylmethane with Ti(NEt2)4 in toluene at reflux for 18 h. The ethylene
polymerization activity of the 1/modified methylaluminoxane (MMAO) catalyst system was low (16.3 kg of polyethylene
(PE)/mol of Ti•h), but pretreatment of 1 with ClSiMe3 followed by activation with MMAO improved the activity up to 154
kg of PE/mol of Ti•h. An NMR-scale reaction of 1 with ClSiMe3 in C6D6 at 80 °C for 22 h indicated the generation of an
amido chlorido complex together with the formation of Et2N–SiMe3. Partial chlorination would facilitate methylation by
MMAO. The polyethylenes obtained in this study are all monomodal by size exclusion chromatography and have linear
structures by NMR spectroscopy. The catalyst system was also found to be active for ethylene/1-octene copolymerization
(90 kg of copolymer/mol of Ti•h).

The polymerization of α-olefins with titanium(IV) com-
plexes that contain a bulky bidentate diamide ligand is a
part of the studies on post-metallocene catalysts [1]. The
formal electron count of this catalyst system becomes lower
than that of a metallocene, and thus, the cationic active
species in the polymerization reactions can be more elec-
trophilic. Figure 1 gives some examples of titanium com-
plexes with chelating diamide ligands used for the α-olefin
polymerization reactions. McConville et al. demonstrated
the high activity of complex A in the polymerization of 1-
hexene by activation with methylaluminoxane (MAO); [2]
other examples of polymerizations with complex A,
including the copolymerization of ethylene with 2-butene
[3], synthesis of isotactic poly(propylene) [4], and living
polymerization of propylene [5], are known. Nomura and

coworkers developed another type of complex B, which
exhibited high catalytic activities for the polymerization of
ethylene [6]. The catalytic activities of complexes C [7], D
[8], E [9], and F [10] in ethylene polymerizations are also
explored. Ethylene/1-octene copolymerization reactions
with complexes G and H were studied by the Patton group
[11, 12].

We are interested in the coordination chemistry of
deprotonated 2,2′-bis(indolyl)methanes (henceforth: bis
(indolyl)s) toward a titanium center and recently revealed
that an indolyl nitrogen of these ligands adopts pyramidal
geometry, which stands in sharp contrast to the typical
planar geometry of amido nitrogen atoms when coordinated
to early transition metals [13]. Bis(indolyl)-ligated titanium
bis(diethylamido) complexes were also found to serve as
catalysts for the intermolecular hydroamination of alkynes
[13]. In this study, we report the catalytic features of bis
(diethylamido){di(3-methylindol-2-yl)phenylmethane}tita-
nium (1) for polymerization reactions. Although the poly-
merization of ethylene using the 1/MAO catalyst system
was preliminarily investigated by Mason et al. [14], we
clarified here that pretreatment of 1 with ClSiMe3 before
activation with modified methylaluminoxane (MMAO)
improved the activity. In addition, the copolymerization of
ethylene with 1-octene was also examined. The obtained
polymers were characterized by NMR spectroscopy, size
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exclusion chromatography (SEC), and differential scanning
calorimetry (DSC).

Complex 1 was originally synthesized by the Mason
group; however, their isolated yield was low (23%) [14].
We isolated 1 as brown powder in 85% yield by a slight
modification of Mason’s procedure (Scheme 1). A mixture
of Ti(NEt2)4 [15] and 2,2′-di(3-methylindolyl)phe-
nylmethane [16] in a 1.2:1 molar ratio was heated to reflux
in toluene for 18 h to give a reddish brown solution, from
which 1 was obtained by evaporation, followed by washing
with cold pentane to remove the small amount of unreacted
Ti(NEt2)4. The identification was verified by comparison
with the 1H NMR spectrum reported in the literature [14].

Ethylene (1 atm) polymerization using 1 was carried out
in toluene for 15 min at room temperature using MMAO
([Al]/[Ti]= 1000) as an activator (Fig. 2(a)). The reaction
was quenched by the addition of methanol/HCl(aq), which
precipitated the polyethylene (PE), and the product was then
dried in vacuo at 80 °C for 2 h. The activity (16.3 kg of PE/
mol of Ti•h) estimated for these reaction conditions is more
than 10 times higher than that reported by Mason et al. (1.1
kg of PE/mol of Ti•h, ethylene= 2 atm, [Al]/Ti= 1000,

25 °C, solv.= toluene) [14], which may be due to the dif-
ference in the activator; however, the activity is still low. It
has been reported that a dipyrrolide-ligated zirconium
amido complex polymerized ethylene when the complex
was pretreated with ClSiMe3 [17]. Thus, 1 was pretreated
with ClSiMe3 at 70 °C, and its activity increased up to
154 kg of PE/mol of Ti•h. Although a higher activity was
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Fig. 1 Representative examples of titanium complexes bearing chelating diamide ligands used for the polymerization of α-olefins
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Fig. 2 (a) Ethylene polymerization with the 1/MMAO and 1/ClSiMe3/
MMAO catalyst systems. Conditions: [Ti] 20 μmol, MMAO (6.5 wt%
in toluene, 9 mL, 20 mmol), [Al]/[Ti]= 1000, ethylene= 1 atm. (b)
Time-dependent ethylene flow rate for the 1/ClSiMe3/MMAO catalyst
system at room temperature under 1 atm of ethylene monitored by a
mass flow meter
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reported for complex B (Si= SitBuMe2, 709 kg of PE/mol
of Ti•h, ethylene= 4 kg/cm2, cocat.=MMAO, [Al]/[Ti]=
1000, 60 °C, 1 h, solv.= heptane) [6], this value is higher
than those of C (20 kg of PE/mol of Ti•h, ethylene= 1 atm,
cocat.=MMAO, [Al]/[Ti]= 1000, 40 °C, 0.5 h, solv.=
toluene) [7] and D (7 kg of PE/mol of Ti•h, ethylene= 1
atm, cocat.=MAO, [Al]/[Ti]= 500, 20 °C, 15 min., solv.
= pentane) [8] and is comparable with those of E (197 of
PE/mol of Ti•h, ethylene= 1.6 atm, cocat.=MAO, [Al]/
[Ti]= 1340, 60 °C, 0.5 h, solv.= toluene) [9] and F (101 kg
of PE/mol of Ti•h, ethylene= 1 atm, cocat.=MAO, [Al]/
[Ti]= 800, room temperature, 0.5 h, solv.= toluene) [10].
We have discussed why the pretreatment of 1 with ClSMe3
improved the activity (vide infra).

The ethylene flow rate was monitored by a flow meter for
to 60 min with the 1/ClSiMe3/MMAO catalyst system
(Fig. 2(b)). The rate was immediately reduced to 10% in 10
min, and it further slowly decreased to 3 mL/min at 60 min.
This result indicates that rapid ethylene polymerization
started soon after the injection of catalyst solution, and the
major active species was deactivated in a short time.

To identify the species generated by the pretreatment of 1
with ClSiMe3, a 1:2 mixture of 1 and ClSiMe3 in C6D6 was
heated at 70 °C for 22 h, giving rise to a deep brown
solution. The 1H NMR spectrum of the solution (Fig. 3, top)
indicated the disappearance of 1 (Fig. 3, bottom), and the
resonances assignable to the methyl groups of Et2N–SiMe3
(0.17 ppm) and ClSiMe3 (0.10 ppm) in a 1:1 ratio were
observed, indicating that one of the two diethylamido
(NEt2) ligands is replaced by a chlorido ligand to form the
amido chlorido species. The 1H NMR signals of the NEt2
ligand in this species were found at 3.56 and 3.08 ppm
(NCH2CH3, each quartet, 3JH–H= each 7 Hz) and at 0.87
and 0.67 ppm (NCH2CH3, each triplet, 3JH–H= each 7 Hz).
Two sets of signals identified as the NEt2 ligand were

observed because two diastereomers of the generated amido
chlorido species can be formed. The partial chlorination
reactions of amido ligands with ClSiMe3 are known for the
titanium [18] and tantalum [19] complexes. We added
excess (10 eq.) ClSiMe3 and heated the mixture at 100 °C in
toluene-d8, but no further reaction processes were observed.
These results suggest the following conclusions: i) ClSiMe3
serves as a chlorination reagent in the 1/ClSiMe3/MMAO
catalyst system, and it leaves one of the amido ligands
attached to the titanium center, and ii) the substitution of the
chlorido ligand by the alkyl ligand by MMAO is faster than
that of the amido ligand, which improves the ethylene
polymerization activity.

The structures of the resultant polyethylenes were
examined by 1H and 13C{1H} NMR spectroscopy (JEOL
JNM-ECA500), SEC (Waters 150C, 1,2-dichlorobenzene as
the eluent at a flow rate of 1 mL/min vs polystyrene stan-
dard), and DSC (TA instruments Q2000 at a rate of 10 °C/
min.). According to the NMR studies (C2D2Cl4, 130 °C), all
the polyethylenes were linear and had no significant term-
inal vinyl groups, suggesting that polymer chain transfer to
an aluminum center is the dominant termination process,
and no β-hydrogen elimination occurs in the initial stage of
polymerization; however, it is also possible that the rela-
tively low contents of the vinyl groups relative to the
polymer chains make them invisible by NMR spectroscopy.
The melting points (Tm) were almost identical for all sam-
ples (131–134 °C). The PEs obtained in this work were all
monomodal by SEC, and the molecular weight distribution
of polyethylene synthesized by the 1/ClSiMe3/MMAO
catalyst system (Mw/Mn= 5.8) was narrower than that pre-
pared using the 1/MMAO system (Mw/Mn= 13). Partial
chlorination would induce the generation of a relatively
uniform cationic active species, while the Mw/Mn value is
still broad, probably due to the remaining amido ligand.

Ethylene polymerization with the 1/ClSiMe3/MMAO cat-
alyst system in the presence of 1-octene provided an ethylene/
1-octene copolymer (Fig. 4(a)). The activity (90 kg of copo-
lymer/mol of Ti•h) is slightly lower than that of ethylene
polymerization (154 kg of PE/mol of Ti•h). The produced
copolymer displayed a lower melting point (123 °C)
than that of PE (131–134 °C), while the Mn (1.2 × 105) and
Mw/Mn (5.7, monomodal molecular weight distribution)
values are almost identical (Mn= 1.1 × 105 and Mw/Mn= 5.9
for PE). The incorporation of 0.4mol% of 1-octene in the
linear high-density PE was determined by 13C NMR in
C2D2Cl4 at 130 °C (Fig. 4(b)), indicating that the catalyst
system reacts with ethylene faster than it react with 1-octene.
This result is in contrast with that of ethylene/1-octene
copolymerization by complex A (R=iPr, X=Cl) activated by
MMAO (36.6–43.2 mol%) [20].

This work demonstrated the catalytic activities of 1 for
ethylene polymerization and for ethylene/1-octene

Fig. 3 1H NMR (500MHz) spectra measured at room temperature of
(top) the reaction mixture (C6D6, 70 °C, 22 h) of 1 and ClSiMe3 and
(bottom) a C6D6 solution of 1
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copolymerization. We found that the 1/MMAO catalyst
system shows low activity for ethylene polymerization as
preliminary reported by Mason [14], but pretreatment of 1
with ClSiMe3, followed by activation with MMAO,
improved the activity. The 1/ClSiMe3/MMAO catalyst
system also works for the copolymerization of ethylene and
1-octene. The 1H NMR study revealed that ClSiMe3
replaces only one of the two amido ligands in 1 with a
chlorido ligand, and the other amido ligand remains on the
titanium center. Thus, we are now exploring other chlor-
ination reagents to generate the dichlorido complex. If this
complex can be prepared, the obtained species is expected
to have higher activity in the polymerization.
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