Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Molecular dynamics study of the molecular mobilities and side-chain terminal affinities of 2-methoxyethyl acrylate and 2-hydroxyethyl methacrylate

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Tanaka M, Motomura T, Kawada M, Anzai T, Kasori Y, Shiroya T, et al. Blood compatible aspects of poly(2-methoxyethylacrylate) (PMEA)—relationship between protein adsorption and platelet adhesion on PMEA surface. Biomaterials. 2000;21:1471–81.

    Article  CAS  Google Scholar 

  2. Tanaka M, Hayashi T, Morita S. The roles of water molecules at the biointerface of medical polymers. Polym J. 2013;45:701–10.

    Article  CAS  Google Scholar 

  3. Javakhishvili I, Tanaka M, Ogura K, Jankova K, Hvilsted S. Synthesis of graft copolymers based on poly(2-methoxyethyl acrylate) and investigation of the associated water structure. Macromol Rapid Commun. 2012;33:319–25.

    Article  CAS  Google Scholar 

  4. Miwa Y, Ishida H, Saitô H, Tanaka M, Mochizuki A. Network structures and dynamics of dry and swollen poly(acrylate)s. Characterization of high- and low-frequency motions as revealed by suppressed or recovered intensities (SRI) analysis of 13C NMR. Polymer. 2009;50:6091–9.

    Article  CAS  Google Scholar 

  5. Tanaka M, Sato K, Kitakami E, Kobayashi S, Hoshiba T, Fukushima K. Design of biocompatible and biodegradable polymers based on intermediate water concept. Polym J. 2015;47:114–21.

    Article  CAS  Google Scholar 

  6. Seo J-H, Yui N. The effect of molecular mobility of supramolecular polymer surfaces on fibroblast adhesion. Biomaterials. 2013;34:55–63.

    Article  CAS  Google Scholar 

  7. Nagumo R, Ito T, Akamatsu K, Miura R, Suzuki A, Tsuboi H, et al. Molecular dynamics simulations for microscopic behavior of water molecules in the vicinity of zwitterionic self-assembled monolayers. Polym J. 2012;44:1149–53.

    Article  CAS  Google Scholar 

  8. Nagumo R, Akamatsu K, Miura R, Suzuki A, Hatakeyama N, Takaba H, et al. A theoretical design of surface modifiers for suppression of membrane fouling: potential of poly(2-methoxyethylacrylate). J Chem Eng Jpn. 2012;45:568–70.

    Article  CAS  Google Scholar 

  9. Nagumo R, Akamatsu K, Miura R, Suzuki A, Hatakeyama N, Takaba H, et al. Computational chemistry study on the microscopic interactions between biomolecules and hydrophilic polymeric materials. J Chem Eng Jpn. 2013;46:421–3.

    Article  CAS  Google Scholar 

  10. Nagumo R, Terao S, Miyake T, Furukawa H, Iwata S, Mori H, et al. Theoretical screening of antifouling polymer repeat units by molecular dynamics simulations. Polym J. 2014;46:736–9.

    Article  CAS  Google Scholar 

  11. Nagumo R, Suzuki R, Miyake T, Furukawa H, Iwata S, Mori H. Molecular dynamics study of the correlation between the solvation structures and the antifouling properties of three types of betaine moieties. J Chem Eng Jpn. 2017;50:333–8.

    Article  CAS  Google Scholar 

  12. Case DA, Betz RM, Cerutti DS, Cheatham III TE, Darden TA, Duke RE, et al. AMBER 2016. San Francisco: University of California; 2016.

  13. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a general AMBER force field. J Comput Chem. 2004;25:1157–74.

    Article  CAS  Google Scholar 

  14. Jakalian A, Bush BL, Jack DB, Bayly CI. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method. J Comput Chem. 2000;21:132–46.

    Article  CAS  Google Scholar 

  15. Jakalian A, Jack DB, Bayly CI. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem. 2002;23:1623–41.

    Article  CAS  Google Scholar 

  16. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81:3684–90.

    Article  CAS  Google Scholar 

  17. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pederson LG. A smooth particle mesh Ewald method. J Chem Phys. 1995;103:8577–93.

    Article  CAS  Google Scholar 

  18. Al-Jimaz AS, Al-Kandary JA, Abdul-Latif A-HM. Acoustical and excess properties of {chlorobenzene + 1-hexanol, or 1-heptanol, or 1-octanol, or 1-nonanol, or 1-decanol} at (298.15, 303.15, 308.15, and 313.15) K. J Chem Eng Data. 2007;52:206–14.

    Article  CAS  Google Scholar 

  19. ChemicalBook Inc. Chemical Book. http://www.chemicalbook.com/ProductList_En.aspx?kwd=methoxyethyl%20acrylate. Accessed 11 Apr 2018.

  20. Peschier LJC, Bouwstra JA, de Bleyser J, Junginger HE, Leyte JC. Water mobility and structure in poly[2-hydroxyethylmethacrylate] hydrogels by means of the pulsed field gradient NMR technique. Biomaterials. 1993;14:945–52.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Kurita Water and Environment Foundation (grant no. 15A032) and JSPS KAKENHI (grant no. 16K06825). We thank Editage (www.editage.jp) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Nagumo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagumo, R., Shimizu, A., Iwata, S. et al. Molecular dynamics study of the molecular mobilities and side-chain terminal affinities of 2-methoxyethyl acrylate and 2-hydroxyethyl methacrylate. Polym J 51, 365–370 (2019). https://doi.org/10.1038/s41428-018-0121-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-018-0121-z

This article is cited by

Search

Quick links