Effect of AlR3 (R = Me, Et, iBu) addition on the composition and microstructure of ethylene/1-olefin copolymers made with post-metallocene complexes of group 4 elements

  • 542 Accesses

  • 1 Citations


The effect of trialkylaluminum compound (AlR3, where R = Me, Et, iBu) addition on the performance of the [LigZrCl]2(μ-O)/AliBu3/Ph3CB(C6F5)4 and LigTiCl2/AliBu3/Ph3CB(C6F5)4 (Lig = Me2N(CH2)2N(CH2-2-O-3,5-tBu2-C6H2)2) catalysts in ethylene/1-olefin copolymerization was investigated. The presence of AlMe3 in the feed during the copolymerization process catalyzed by the diamine-bis(phenolate) zirconium catalyst greatly increases the amount of incorporated comonomer and leads to microstructural changes, e.g., the formation of blocky and alternating sequences of 1-olefin units. Moreover, the use of AlMe3 limits the reaction yield and decreases the molecular weight of the produced copolymers. The catalytic properties of the diamine-bis(phenolate) titanium catalyst were much less affected by trimethylaluminum; its use slightly decreased the catalyst activity and copolymer molecular weight. A lower molecular weight was also detected for the copolymers produced by catalysts in the presence of both AlEt3 and AliBu3, whereas they did not cause any important changes in the catalytic activity, overall composition or microstructure of the produced copolymers. Copolymerization tests with other catalytic systems, (LigFI)2ZrCl2/AliBu3/Ph3CB(C6F5)4 (LigFI = (C6H5)N = CH(2-O-3,5-tBu2-C6H2)) and Et(Ind)2ZrCl2/MMAO, in the presence of AlMe3, were also carried out for the purpose of comparison.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Matsugi T, Fujita T. High-performance olefin polymerization catalysts discovered on the basis of a new catalyst design concept. Chem Soc Rev. 2008;37:1264–77.

  2. 2.

    Britovsek GJP, Gibson VC, Wass DF. The search for new-generation olefin polymerization catalysts: life beyond metallocenes. Angew Chem Int Ed. 1999;38:428–47.

  3. 3.

    Nomura K, Zhang S. Design of vanadium complex catalysts for precise olefin polymerization. Chem Rev. 2011;111:2342–62.

  4. 4.

    Hung J, Cole AP, Waymouth RM. Control of sequence distribution of ethylene copolymers: Influence of comonomer sequence on the melting behaviour of ethylene copolymers. Macromolecules. 2003;36:2454–63.

  5. 5.

    Domski GJ, Rose JM, Coates GW, Bolig AD, Brookhart M. Living alkene polymerization: new methods for the precision synthesis of polyolefins. Prog Polym Sci. 2007;32:30–92.

  6. 6.

    Mitani M, Nakano T, Fujita T. Unprecedented living olefin polymerization derived from an attractive interaction between a ligand and a growing polymer chain. Chem Eur J. 2003;9:2396–403.

  7. 7.

    Valente A, Mortreux A, Visseaux M, Zinck P. Coordinative chain transfer polymerization. Chem Rev. 2013;113:3836–3857.

  8. 8.

    Zinck P. Tuning polyolefins and polydienes microstructure and architecture via coordinative chain transfer polymerization. Polym Int. 2012;61:2–5.

  9. 9.

    Valente A, Zinck P, Mortreux A, Bria M, Visseaux M. Half-lanthanocene/dialkylmagnesium-mediated coordinative chain transfer copolymerization of styrene and hexene. J Polym Sci Part A: Polym Chem. 2011;49:3778–82.

  10. 10.

    Zhang W, Wei J, Sita LR. Living coordinative chain-transfer polymerization and copolymerization of ethene, α-olefins, and α,ω-nonconjugated dienes using dialkylzinc as “surrogate” chain-growth sites. Macromolecules. 2008;41:7829–33.

  11. 11.

    Kempe R. How to polymerize ethylene in highly controlled fashion? Chem Eur J. 2007;13:2764–73.

  12. 12.

    Hue RJ, Cibuzar MP, Tonks IA. Analysis of polymeryl chain transfer between group 10 metals and main group alkyls during ethylene polymerization. ACS Cat. 2014;4:4223–31.

  13. 13.

    Kuhlman RL, Wenzel TT. Investigation of chain shuttling olefin polymerization using deuterium labeling. Macromolecules. 2008;41:4090–4.

  14. 14.

    Bhrian NN, Brintzinger H-H, Ruchatz D, Fink G. Polymeryl exchange between ansa-zirconocene catalysts for norbornene−ethene copolymerization and aluminum or zinc alkyls. Macromolecules. 2005;38:2056–63.

  15. 15.

    Naga N, Mizunuma K. Chain transfer reaction by trialkylaluminum (AlR3) in the stereospecific polymerization of propylene with metallocene - AlR3/Ph3CB(C6F5)4. Polymer. 1998;39:5059–67.

  16. 16.

    Rieger B, Janiak C. Concentration effects of methylalumoxane, zirconocene dichloride and trimethylaluminum in ethylene polymerization. Angew Makromol Chem. 1994;215:35–46.

  17. 17.

    Saito J, Tohi Y, Matsukawa N, Mitani M, Fujita T. Selective synthesis of Al-terminated polyethylenes using a bis(phenoxy-imine)Zr complex with methylalumoxane. Macromolecules. 2005;38:4955–7.

  18. 18.

    Kretschmer WP, Meetsma A, Hessen B, Schmalz T, Qayyum S, Kempe R. Reversible chain transfer between organoyttrium cations and aluminum: synthesis of aluminum-terminated polyethylene with extremely narrow molecular-weight distribution. Chem Eur J. 2006;12:8969–78.

  19. 19.

    Białek M, Bisz E. Polypropylene and poly(ethylene-co-1-octene) effective synthesis with diamine-bis(phenolate) complexes. Effect of complex structure on catalyst activity and product microstructure. J Polym Sci Part A: Polym Chem. 2017;55:2467–76.

  20. 20.

    Bisz E, Białek M, Zarychta B. Synthesis, characterization and catalytic properties for olefin polymerization of two new dimeric zirconium(IV) complexes having diamine-bis(phenolate) and chloride ligands. Appl Cat A: Gen. 2015;503:26–33.

  21. 21.

    Białek M, Bisz E. Novel diamine-bis(phenolate) Ti(IV) complexes – tuning the complex structure to control catalytic properties in α-olefin polymerization. Appl Cat A: Gen. 2016;525:137–44.

  22. 22.

    Müller A, Hernández Z, Arnal M, Sánchez J. Successive self-nucleation/annealing (SSA): A novel technique to study molecular segregation during crystallization. Polym Bull. 1997;39:465–72.

  23. 23.

    Santamäki S, Aitola E, Kokko E, Repo T, Leskelä M, Seppälä J. Activation of hafnocene catalyzed polymerization of 1-hexene with MAO and borate. Eur Polym J. 2009;45:863–9.

  24. 24.

    Guo Y, He F, Zhang Z, Khan A, Fu Z, Xu J, Fan Z. Influence of trimethylaluminum on kinetics of rac-Et(Ind)2ZrCl2/aluminoxane catalyzed ethylene polymerization. J Organomet Chem. 2016;808:109–16.

  25. 25.

    Bryliakov KP, Semikolenova NV, Yudaev DV, Ystens M, Rytter E, Zakharov VA, et al. 1H and 13C NMR study of the intermediates formed by (Cp-R)2ZrCl2 activation with MAO and AlMe3/[CPh3][B(C6F5)4]. Corelation of spectroscopic and ethene polymerization data. Macromol Chem Phys. 2003;204:1110–7.

  26. 26.

    Naga N, Shiono T, Ikeda T. Profiles of ethylene polymerization with zirconocene–trialkylaluminum/borane compound. J Mol Catal A Chem. 1999;150:155–62.

  27. 27.

    Kravtsov EA, Bryliakov KP, Semikolenova NV, Zakharov VA, Talsi EP. Activation of bis(phenoxyimino)zirconium polymerization catalysts with methylaluminoxane and AlMe3/[CPh3]+[B(C6F5)4]-. Organometallics. 2007;26:4810–5.

  28. 28.

    Ehm C, Cipullo R, Budzelaar PHM, Busico V. Role(s) of TMA in polymerization. Dalton Trans. 2016;45:6847–55.

  29. 29.

    Müller AJ, Arnal ML. Thermal fractionation of polymers. Prog Polym Sci. 2005;30:559–603.

  30. 30.

    Liu W, Rinaldi PL, McIntosh LH, Quirk RP. Poly(ethylene-co-1-octene) characterization by high-temperature multidimensional NMR at 750 MHz. Macromolecules. 2001;34:4757–67.

  31. 31.

    Yao C, Wu C, Wang B, Cui D. Copolymerization of ethylene with 1-hexene and 1-octene catalyzed by fluorenyl N-heterocyclic carbene ligated rare-earth metal precursor. Organometallics. 2013;32:2204–9.

  32. 32.

    Hsieh ET, Randall JC. Monomer sequence distributions in ethylene-1-hexene Copolymers. Macromolecules. 1982;15:1402–6.

  33. 33.

    Seger MR, Maciel GE. Quantiative 13C NMR analysis of sequence distributions in poly(ethylene-co-1-hexene). Anal Chem. 2004;76:5734–47.

  34. 34.

    Britto ML, Galland GB, Santos dos JHZ, Forte MC. Copolymerization of ethylene and 1-hexene with Et(Ind)2ZrCl2 in hexane. Polymer. 2001;42:6355–61.

Download references

Author information

Correspondence to Marzena Białek.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fryga, J., Białek, M. Effect of AlR3 (R = Me, Et, iBu) addition on the composition and microstructure of ethylene/1-olefin copolymers made with post-metallocene complexes of group 4 elements. Polym J 51, 19–29 (2019) doi:10.1038/s41428-018-0117-8

Download citation

Further reading