Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Surface and interface designs in side-chain liquid crystalline polymer systems for photoalignment


In side-chain liquid-crystal (SCLC) polymer systems, the liquid crystalline (LC) mesogenic groups preferentially orient normal to the substrate plane due to the excluded volume effect (homeotropic alignment). Photoresponsive azobenzene (Az) mesogens have a transition moment parallel to the molecular long axis. Light irradiation for photoreactions is generally applied perpendicular to the film surface. Therefore, a homeotropic orientation inhibits efficient photoreactions and photoalignments in Az SCLC polymer systems. This review focuses on new approaches to induce a random planar orientation in Az SCLC polymer systems by interface and surface molecular design. The mesogens in a high-density SCLC polymer brush formed by surface-initiated living radical polymerization adopt a random planar orientation. In the film of an SCLC block copolymer with an amorphous block, a random planar orientation is induced via surface segregation of either of the blocks. The random planar orientations of SCLC polymer systems are thermally stable and offer efficient in-plane photoalignment and photoswitching with hierarchical LC molecular architectures, forming, e.g., microphase-separated (MPS) SCLC block copolymers and layered polymer LC systems. These surface and interface molecular designs are expected to provide new concepts and possibilities for LC polymer devices.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Collings PJ, Hird M (eds)., Introduction to liquid crystals: chemistry and physics. London: CRC Press; 1997.

  2. 2.

    Goodby JW, Collings PJ, Kato T, Tschierske C, Gleeson H, Raynes P (eds). Handbook of liquid crystals: fundamentals of liquid crystals. 2nd ed. Vol. 1. Weinheim: Wiley-VCH; 2014.

  3. 3.

    Goodby JW, Collings PJ, Kato T, Tschierske C, Gleeson H, Raynes P (eds). Handbook of liquid crystals: applications of liquid crystals. 2nd ed. Vol. 8. Weinheim: Wiley-VCH; 2014.

  4. 4.

    Wissbrun KF. Rheology of rod-like polymers in the liquid crystalline state. J Rheol. 1981;25:619–62.

    CAS  Article  Google Scholar 

  5. 5.

    Burghardt WR. Molecular orientation and rheology in sheared lyotropic liquid crystalline polymers. Macromol Chem Phys. 1998;199:471–88.

    CAS  Article  Google Scholar 

  6. 6.

    Wegner G. Ultrathin films of polymers: architecture, characterization and properties. Thin Solid Films. 1992;216:105–16.

    CAS  Article  Google Scholar 

  7. 7.

    Adam D, Schuhmacher P, Simmerer J, Häussling L, Siemensmeyer K, Etzbachi K, Ringsdorf H, Haarer D. Fast photoconduction in the highly ordered columnar phase of a discotic liquid crystal. Nature. 1994;371:141.

    CAS  Article  Google Scholar 

  8. 8.

    Funahashi M, Hanna J. Fast hole transport in a new calamitic liquid crystal of 2-(4’-heptyloxyphenyl)-6-dodecylthiobenzothiazole. Phys Rev Lett. 1997;78:2184–7.

    CAS  Article  Google Scholar 

  9. 9.

    Redecker M, Bradley D, Inbasekaran M, Woo E. Mobility enhancement through homogeneous nematic alignment of a liquid-crystalline polyfluorene. Appl Phys Lett. 1999;74:1400–2.

    CAS  Article  Google Scholar 

  10. 10.

    Zhang H, Shiino S, Shishido A, Kanazawa A, Tsutsumi O, Shiono T, Ikeda T. A thiophene liquid crystal as a novel π-conjugated dye for photo-manipulation of molecular alignment. Adv Mater. 2000;12:1336–9.

    CAS  Article  Google Scholar 

  11. 11.

    Sirringhaus H, Wilson R, Friend R, Inbasekaran M, Wu W, Woo E, Grell M, Bradley D. Mobility enhancement in conjugated polymer field-effect transistors through chain alignment in a liquid-crystalline phase. Appl Phys Lett. 2000;77:406–8.

    CAS  Article  Google Scholar 

  12. 12.

    O’Neill M, Kelly SM. Liquid crystals for charge transport, luminescence, and photonics. Adv Mater. 2003;15:1135–46.

    Article  CAS  Google Scholar 

  13. 13.

    McCulloch I, Heeney M, Bailey C, Genevicius K, MacDonald I, Shkunov M, Sparrowe D, Tierney S, Wagner R, Zhang W. Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat Mater. 2006;5:328.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Li Q (ed). Liquid crystals beyond displays: chemistry, physics, and applications. Hoboken: John Wiley & Sons; 2012.

  15. 15.

    Kato T, Yoshio M, Ichikawa T, Soberats B, Ohno H, Funahashi M. Transport of ions and electrons in nanostructured liquid crystals. Nat Rev Mater. 2017;2:17001.

    Article  Google Scholar 

  16. 16.

    Hisano K, Aizawa M, Ishizu M, Kurata Y, Nakano W, Akamatsu N, Barrett CJ, Shishido A. Scanning wave photopolymerization enables dye-free alignment patterning of liquid crystals. Sci Adv. 2017;3:e1701610.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  17. 17.

    Goodby JW, Collings PJ, Kato T, Tschierske C, Gleeson H, Raynes P (eds). Handbook of liquid crystals: physical properties and phase behavior of liquid crystals. 2nd ed. Vol. 2. Weinheim: Wiley-VCH; 2014.

  18. 18.

    Geary J, Goodby J, Kmetz A, Patel J. The mechanism of polymer alignment of liquid-crystal materials. J Appl Phys. 1987;62:4100–8.

    CAS  Article  Google Scholar 

  19. 19.

    Chigrinov VG, Kozenkov VM, Kwok H-S (eds). Photoalignment of liquid crystalline materials: physics and applications. Vol. 17. Chichester: John Wiley & Sons; 2008.

  20. 20.

    Ichimura K. Photoalignment of liquid-crystal systems. Chem Rev. 2000;100:1847–74.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Ikeda T. Photomodulation of liquid crystal orientations for photonic applications. J Mater Chem. 2003;13:2037–57.

    CAS  Article  Google Scholar 

  22. 22.

    Seki T, Nagano S, Hara M. Versatility of photoalignment techniques: From nematics to a wide range of functional materials. Polym (Guildf). 2013;54:6053–72.

    CAS  Article  Google Scholar 

  23. 23.

    Ichimura K, Suzuki Y, Seki T, Hosoki A, Aoki K. Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer. Langmuir. 1988;4:1214–6.

    CAS  Article  Google Scholar 

  24. 24.

    Gibbons WM, Shannon PJ, Sun S-T, Swetlin BJ. Surface-mediated alignment of nematic liquid crystals with polarized laser light. Nature. 1991;351:49.

    CAS  Article  Google Scholar 

  25. 25.

    Schadt M, Schmitt K, Kozinkov V, Chigrinov V. Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers. Jpn J Appl Phys. 1992;31:2155.

    CAS  Article  Google Scholar 

  26. 26.

    Hasegawa M, Taira Y. Nematic homogeneous photo alignment by polyimide exposure to linearly polarized UV. J Photopolym Sci Technol. 1995;8:241–8.

    CAS  Article  Google Scholar 

  27. 27.

    Shannon P, Gibbons W, Sun S-T. Patterned optical properties in photopolymerized surface-aligned liquid-crystal films. Nature. 1994;368:532.

    CAS  Article  Google Scholar 

  28. 28.

    Goodby JW, Collings PJ, Kato T, Tschierske C, Gleeson H, Raynes P (eds). Handbook of liquid crystals: supermolecular and polymeric liquid crystals, 2nd ed. Vol. 7. Weinheim: Wiley-VCH; 2014.

  29. 29.

    Kawatsuki N. Photoalignment and photoinduced molecular reorientation of photosensitive materials. Chem Lett. 2011;40:548–54.

    CAS  Article  Google Scholar 

  30. 30.

    Shishido A. Rewritable holograms based on azobenzene-containing liquid-crystalline polymers. Polym J. 2010;42:525.

    CAS  Article  Google Scholar 

  31. 31.

    Seki T. New strategies and implications for the photoalignment of liquid crystalline polymers. Polym J. 2014;46:751.

    CAS  Article  Google Scholar 

  32. 32.

    Nagano S. Inducing planar orientation in side-chain liquid-crystalline polymer systems via interfacial control. Chem Rec. 2016;16:378–92.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Goodby JW, Collings PJ, Kato T, Tschierske C, Gleeson H, Raynes P (eds). Handbook of liquid crystals: applications of liquid crystals, 2nd ed., Vol. 1. Weinheim: Wiley-VCH; 2014.

  34. 34.

    Faetti S, Fronzoni L. Molecular orientation in nematic liquid crystal films with two free surfaces. Solid State Commun. 1978;25:1087–90.

    CAS  Article  Google Scholar 

  35. 35.

    Kimura H, Nakano H. Statistical theory of surface tension and molecular orientations at the free surface in nematic liquid crystals. J Phys Soc Jpn. 1985;54:1730–6.

    CAS  Article  Google Scholar 

  36. 36.

    Ocko B, Braslau A, Pershan PS, Als-Nielsen J, Deutsch M. Quantized layer growth at liquid-crystal surfaces. Phys Rev Lett. 1986;57:94.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Scaramuzza N, Berlic C, Barna ES, Strangi G, Barna V, Ionescu AT. Molecular simulation of the free surface order in NLC samples. J Phys Chem B. 2004;108:3207–10.

    CAS  Article  Google Scholar 

  38. 38.

    Zhao Y, Ikeda T (eds). Smart light-responsive materials: azobenzene-containing polymers and liquid crystals, Hoboken: John Wiley & Sons; 2009.

  39. 39.

    Weigert F, Nakashima M. Farbentüchtigkeit künstlicher Netzhäute. Naturwissenschaften. 1929;17:840–1.

    CAS  Article  Google Scholar 

  40. 40.

    Tsujii Y, Ohno K, Yamamoto S, Goto A, Fukuda T. Structure and properties of high-density polymer brushes prepared by surface-initiated living radical polymerization. (ed. Jordan R) In: Surface-initiated polymerization I. Springer; 2006. pp 1–45.

  41. 41.

    Ejaz M, Yamamoto S, Ohno K, Tsujii Y, Fukuda T. Controlled graft polymerization of methyl methacrylate on silicon substrate by the combined use of the langmuir-blodgett and atom transfer radical polymerization techniques. Macromolecules. 1998;31:5934–6.

    CAS  Article  Google Scholar 

  42. 42.

    Matyjaszewski K, Miller PJ, Shukla N, Immaraporn B, Gelman A, Luokala BB, Siclovan TM, Kickelbick G, Vallant T, Hoffmann H. Polymers at interfaces: using atom transfer radical polymerization in the controlled growth of homopolymers and block copolymers from silicon surfaces in the absence of untethered sacrificial initiator. Macromolecules. 1999;32:8716–24.

    CAS  Article  Google Scholar 

  43. 43.

    Balamurugan S, Mendez S, Balamurugan SS, O’Brien MJ, López GP. Thermal response of poly (N-isopropylacrylamide) brushes probed by surface plasmon resonance. Langmuir. 2003;19:2545–9.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Jones DM, Huck WT. Controlled surface-initiated polymerizations in aqueous media. Adv Mater. 2001;13:1256–9.

    CAS  Article  Google Scholar 

  45. 45.

    Suzuki H, Nurul HM, Seki T, Kawamoto T, Haga H, Kawabata K, Takeoka Y. Precise synthesis and physicochemical properties of high-density polymer brushes designed with poly (N-isopropylacrylamide). Macromolecules. 2010;43:9945–56.

    CAS  Article  Google Scholar 

  46. 46.

    Piech M, Bell NS. Controlled synthesis of photochromic polymer brushes by atom transfer radical polymerization. Macromolecules. 2006;39:915–22.

    CAS  Article  Google Scholar 

  47. 47.

    Shinzaburo Ito JK, Yamashita Katsuhiro, Ohoka Masataka, Ohkita Hideo, Tsujii Yoshinobu, Takeshi Fukuda. Photofunctional ultrathin films by high-density graft polymerization. Trans Mater Res Soc Jpn. 2005;30:687–90.

    Google Scholar 

  48. 48.

    Sakakiyama T, Ohkita H, Ohoka M, Ito S, Tsujii Y, Fukuda T. Fabrication and electrochemical properties of high-density graft films with ferrocene moieties on ITO substrates. Chem Lett. 2005;34:1366–7.

    CAS  Article  Google Scholar 

  49. 49.

    Feng W, Brash J, Zhu S. Atom-transfer radical grafting polymerization of 2-methacryloyloxyethyl phosphorylcholine from silicon wafer surfaces. J Polym Sci Part A: Polym Chem. 2004;42:2931–42.

    CAS  Article  Google Scholar 

  50. 50.

    Iwata R, Suk-In P, Hoven VP, Takahara A, Akiyoshi K, Iwasaki Y. Control of nanobiointerfaces generated from well-defined biomimetic polymer brushes for protein and cell manipulations. Biomacromolecules. 2004;5:2308–14.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Kobayashi M, Terayama Y, Hosaka N, Kaido M, Suzuki A, Yamada N, Torikai N, Ishihara K, Takahara A. Friction behavior of high-density poly (2-methacryloyloxyethyl phosphorylcholine) brush in aqueous media. Soft Matter. 2007;3:740–6.

    CAS  Article  Google Scholar 

  52. 52.

    Hamelinck PJ, Huck WT. Homeotropic alignment on surface-initiated liquid crystalline polymer brushes. J Mater Chem. 2005;15:381–5.

    CAS  Article  Google Scholar 

  53. 53.

    Peng B, Johannsmann D, Rühe J. Polymer brushes with liquid crystalline side chains. Macromolecules. 1999;32:6759–66.

    CAS  Article  Google Scholar 

  54. 54.

    Peng B, Rühe J, Johannsmann D. Homogeneously aligned liquid-crystal polymer brushes. Adv Mater. 2000;12:821–4.

    CAS  Article  Google Scholar 

  55. 55.

    Uekusa T, Nagano S, Seki T. Unique molecular orientation in a smectic liquid crystalline polymer film attained by surface-initiated graft polymerization. Langmuir. 2007;23:4642–5.

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Uekusa T, Nagano S, Seki T. Highly ordered in-plane photoalignment attained by the brush architecture of liquid crystalline azobenzene polymer. Macromolecules. 2008;42:312–8.

    Article  CAS  Google Scholar 

  57. 57.

    Haque HA, Hara M, Nagano S, Seki T. Photoinduced in-plane motions of azobenzene mesogens affected by the flexibility of underlying amorphous chains. Macromolecules. 2013;46:8275–83.

    CAS  Article  Google Scholar 

  58. 58.

    Haque HA, Nagano S, Seki T. Lubricant effect of flexible chain in the photoinduced motions of surface-grafted liquid crystalline azobenzene polymer brush. Macromolecules. 2012;45:6095–103.

    CAS  Article  Google Scholar 

  59. 59.

    Haque HA, Nagano S, Seki T. Effect of flexible chain length on the photoorientation behavior of surface-grafted liquid crystalline azobenzene block copolymer brush. Mol Cryst Liq Cryst. 2013;583:10–20.

    CAS  Article  Google Scholar 

  60. 60.

    Haque HA, Kakehi S, Hara M, Nagano S, Seki T. High-density liquid-crystalline azobenzene polymer brush attained by surface-initiated ring-opening metathesis polymerization. Langmuir. 2013;29:7571–5.

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Camorani P, Cristofolini L, Fontana M, Angiolini L, Giorgini L, Paris F. Azo-containing polymer brushes: photoalignment and application as command surfaces. Mol Cryst Liq Cryst. 2009;502:56–64.

    CAS  Article  Google Scholar 

  62. 62.

    Wang D, Ye G, Wang X, Wang X. Graphene functionalized with azo polymer brushes: surface-initiated polymerization and photoresponsive properties. Adv Mater. 2011;23:1122–5.

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Kopyshev A, Lomadze N, Feldmann D, Genzer J, Santer S. Making polymer brush photosensitive with azobenzene containing surfactants. Polym (Guildf). 2015;79:65–72.

    CAS  Article  Google Scholar 

  64. 64.

    Kopyshev A, Galvin CJ, Genzer J, Lomadze N, Santer S. Polymer brushes modified by photosensitive azobenzene containing polyamines. Polym (Guildf). 2016;98:421–8.

    CAS  Article  Google Scholar 

  65. 65.

    Roling O, Stricker L, Voskuhl J, Lamping S, Ravoo BJ. Supramolecular surface adhesion mediated by azobenzene polymer brushes. Chem Commun. 2016;52:1964–6.

    CAS  Article  Google Scholar 

  66. 66.

    Park C, Yoon J, Thomas EL. Enabling nanotechnology with self assembled block copolymer patterns. Polym (Guildf). 2003;44:6725–60.

    CAS  Article  Google Scholar 

  67. 67.

    Hamley IW (ed). Developments in block copolymer science and technology. Chichester: John Wiley & Sons; 2004.

  68. 68.

    Lazzari M, Liu G, Lecommandoux S. (eds). Block copolymers in nanoscience. Weinheim: John Wiley & Sons; 2007.

  69. 69.

    Tsui OKC, Russel TP (eds). Polymer thin films. Vol. 1. Singapore: World Scientific; 2008.

  70. 70.

    Bang J, Jeong U, Ryu DY, Russell TP, Hawker CJ. Block copolymer nanolithography: translation of molecular level control to nanoscale patterns. Adv Mater. 2009;21:4769–92.

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Luo M, Epps TH III. Directed block copolymer thin film self-assembly: emerging trends in nanopattern fabrication. Macromolecules. 2013;46:7567–79.

    CAS  Article  Google Scholar 

  72. 72.

    Adachi M, Takazawa F, Tomikawa N, Tokita M, Watanabe J. Magnetic orientation of microcylinders in liquid crystalline diblock copolymer and clarification of its orientation mechanism. Polym J. 2007;39:155.

    CAS  Article  Google Scholar 

  73. 73.

    Mao G, Ober C. Block copolymers containing liquid crystalline segments. Acta Polym. 1997;48:405–22.

    CAS  Article  Google Scholar 

  74. 74.

    Tokita M, Adachi M-a, Masuyama S, Takazawa F, Watanabe J. Characteristic shear-flow orientation in LC block copolymer resulting from compromise between orientations of microcylinder and LC mesogen. Macromolecules. 2007;40:7276–82.

    CAS  Article  Google Scholar 

  75. 75.

    Yamada M, Hirao A, Nakahama S, Iguchi T, Watanabe J. Synthesis of side-chain liquid crystalline homopolymers and block copolymers with well-defined structures by living anionic polymerization and their thermotropic phase behavior. Macromolecules. 1995;28:50–58.

    CAS  Article  Google Scholar 

  76. 76.

    Yu H, Li J, Ikeda T, Iyoda T. Macroscopic parallel nanocylinder array fabrication using a simple rubbing technique. Adv Mater. 2006;18:2213–5.

    CAS  Article  Google Scholar 

  77. 77.

    Tian Y, Watanabe K, Kong X, Abe J, Iyoda T. Synthesis, nanostructures, and functionality of amphiphilic liquid crystalline block copolymers with azobenzene moieties. Macromolecules. 2002;35:3739–47.

    CAS  Article  Google Scholar 

  78. 78.

    Komura M, Watanabe K, Iyoda T, Yamada T, Yoshida H, Iwasaki Y. Laboratory-GISAXS measurements of block copolymer films with highly ordered and normally oriented nanocylinders. Chem Lett. 2009;38:408–9.

    CAS  Article  Google Scholar 

  79. 79.

    Asaoka S, Uekusa T, Tokimori H, Komura M, Iyoda T, Yamada T, Yoshida H. Normally oriented cylindrical nanostructures in amphiphilic PEO–LC diblock copolymers films. Macromolecules. 2011;44:7645–58.

    CAS  Article  Google Scholar 

  80. 80.

    Yu H, Iyoda T, Ikeda T. Photoinduced alignment of nanocylinders by supramolecular cooperative motions. J Am Chem Soc. 2006;128:11010–1.

    CAS  PubMed  Article  Google Scholar 

  81. 81.

    Morikawa Y, Nagano S, Watanabe K, Kamata K, Iyoda T, Seki T. Optical alignment and patterning of nanoscale microdomains in a block copolymer thin film. Adv Mater. 2006;18:883–6.

    CAS  Article  Google Scholar 

  82. 82.

    Morikawa Y, Kondo T, Nagano S, Seki T. Photoinduced 3D ordering and patterning of microphase-separated nanostructure in polystyrene-based block copolymer. Chem Mater. 2007;19:1540–2.

    CAS  Article  Google Scholar 

  83. 83.

    Nagano S, Koizuka Y, Murase T, Sano M, Shinohara Y, Amemiya Y, Seki T. Synergy effect on morphology switching: real-time observation of photo-orientation of microphase separation in a block copolymer. Angew Chem Int Ed. 2012;51:5884–8.

    CAS  Article  Google Scholar 

  84. 84.

    Sano M, Nakamura S, Hara M, Nagano S, Shinohara Y, Amemiya Y, Seki T. Pathways toward photoinduced alignment switching in liquid crystalline block copolymer films. Macromolecules. 2014;47:7178–86.

    CAS  Article  Google Scholar 

  85. 85.

    Bhatia QS, Pan DH, Koberstein JT. Preferential surface adsorption in miscible blends of polystyrene and poly (vinyl methyl ether). Macromolecules. 1988;21:2166–75.

    CAS  Article  Google Scholar 

  86. 86.

    Huang E, Russell T, Harrison C, Chaikin P, Register R, Hawker C, Mays J. Using surface active random copolymers to control the domain orientation in diblock copolymer thin films. Macromolecules. 1998;31:7641–50.

    CAS  Article  Google Scholar 

  87. 87.

    Tanaka K, Jiang X, Nakamura K, Takahara A, Kajiyama T, Ishizone T, Hirao A, Nakahama H-I. Effect of chain end chemistry on surface molecular motion of polystyrene films. Macromolecules. 1998;31:5148–9.

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Tanaka K, Takahara A, Kajiyama T. Surface molecular aggregation structure and surface molecular motions of high-molecular-weight polystyrene/low-molecular-weight poly (methyl methacrylate) blend films. Macromolecules. 1998;31:863–9.

    CAS  Article  Google Scholar 

  89. 89.

    Yokoyama H, Tanaka K, Takahara A, Kajiyama T, Sugiyama K, Hirao A. Surface structure of asymmetric fluorinated block copolymers. Macromolecules. 2004;37:939–45.

    CAS  Article  Google Scholar 

  90. 90.

    Yokoyama H, Miyamae T, Han S, Ishizone T, Tanaka K, Takahara A, Torikai N. Spontaneously formed hydrophilic surfaces by segregation of block copolymers with water-soluble blocks. Macromolecules. 2005;38:5180–9.

    CAS  Article  Google Scholar 

  91. 91.

    Sano M, Hara M, Nagano S, Shinohara Y, Amemiya Y, Seki T. New aspects for the hierarchical cooperative motions in photoalignment process of liquid crystalline block copolymer films. Macromolecules. 2015;48:2217–23.

    CAS  Article  Google Scholar 

  92. 92.

    Sano M, Shan F, Hara M, Nagano S, Shinohara Y, Amemiya Y, Seki T. Dynamic photoinduced realignment processes in photoresponsive block copolymer films: effects of the chain length and block copolymer architecture. Soft Matter. 2015;11:5918–25.

    CAS  PubMed  Article  Google Scholar 

  93. 93.

    Sano M, Murase T, Hara M, Nagano S, Shinohara Y, Amemiya Y, Seki T. Photo-switching behavior of microphase separated structure in liquid crystalline azobenzene block copolymers possessing different poly (alkyl methacrylate) blocks. Mol Cryst Liq Cryst. 2015;617:5–13.

    CAS  Article  Google Scholar 

  94. 94.

    Fukuhara K, Fujii Y, Nagashima Y, Hara M, Nagano S, Seki T. Liquid-crystalline polymer and block copolymer domain alignment controlled by free-surface segregation. Angew Chem Int Ed. 2013;52:5988–91.

    CAS  Article  Google Scholar 

  95. 95.

    Fukuhara K, Nagano S, Hara M, Seki T. Free-surface molecular command systems for photoalignment of liquid crystalline materials. Nat Commun. 2014;5:3320.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  96. 96.

    Fukuhara K, Hara M, Nagano S, Seki T. Free surface-induced planar orientation in liquid crystalline block copolymer films: on the design of additive Surface active polymer layer. Mol Crys Liq Cryst. 2014;601:11–19.

    CAS  Article  Google Scholar 

  97. 97.

    Miyake K, Ikoma H, Okada M, Matsui S, Kondo M, Kawatsuki N. Orientation direction control in liquid crystalline photoalignable polymeric films by adjusting the free-surface condition. ACS Macro Lett. 2016;5:761–5.

    CAS  Article  Google Scholar 

  98. 98.

    Ma J, Hashimoto K, Koganezawa T, Tajima K. End-on orientation of semiconducting polymers in thin films induced by surface segregation of fluoroalkyl chains. J Am Chem Soc. 2013;135:9644–7.

    CAS  PubMed  Article  Google Scholar 

  99. 99.

    Kawata K. Orientation control and fixation of discotic liquid crystal. Chem Rec. 2002;2:59–80.

    CAS  PubMed  Article  Google Scholar 

  100. 100.

    Bates CM, Seshimo T, Maher MJ, Durand WJ, Cushen JD, Dean LM, Blachut G, Ellison CJ, Willson CG. Polarity-switching top coats enable orientation of sub–10-nm block copolymer domains. Science. 2012;338:775–9.

    CAS  PubMed  Article  Google Scholar 

  101. 101.

    Mukai K, Hara M, Nagano S, Seki T. High-density liquid-crystalline polymer brushes formed by surface segregation and self-assembly. Angew Chem Int Ed. 2016;55:14028–32.

    CAS  Article  Google Scholar 

  102. 102.

    Inutsuka M, Yamada NL, Ito K, Yokoyama H. High density polymer brush spontaneously formed by the segregation of amphiphilic diblock copolymers to the polymer/water interface. ACS Macro Lett. 2013;2:265–8.

    CAS  Article  Google Scholar 

Download references


I thank Professor Takahiro Seki of Nagoya University for his encouragement, kind expostulations, understanding, and consideration of my study. I also acknowledge the support provided by Associate Professor Yukikazu Takeoka and Assistant Professor Mitsuo Hara of Nagoya University for their kind support. I am thankful for the significant experimental efforts and results of Dr. Takayuki Uekusa, Dr. Yuichi Morikawa, Dr. Hafiz Ashraful Haque, Mr. Yusuke Koizuka, Mr. Tomoya Murase, Mr. Kenjiro Imai, Dr. Masami Sano, Dr. Kei Fukuhara, Mr. Yuki Nagashima, Mr. Koji Mukai, and many graduate students in our laboratory at Nagoya University. The real-time in situ GI-SAXS observation studies involved collaborative work with Dr. Yuya Shinohara of the University of Tennessee and Professor Yoshiyuki Amemiya of the University of Tokyo. This work was supported by a Grant-in-Aid for Scientific Research (B: 25286025, S: 16H06355) from JSPS, the PRESTO Program from JST, Toyo Gosei Memorial Foundation.

Author information



Corresponding author

Correspondence to Shusaku Nagano.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nagano, S. Surface and interface designs in side-chain liquid crystalline polymer systems for photoalignment. Polym J 50, 1107–1119 (2018).

Download citation


Quick links