Butylated lignin as a compatibilizing agent for polypropylene-based carbon fiber-reinforced plastics


Lignin is a renewable resource, but it is also considered a waste or a very-low-value material. Herein, we propose a lignin-derived compatibilizing agent as an alternative to the current compatibilizing agents. We prepared a polypropylene-based carbon fiber-reinforced plastic (CFRP) with butylated lignin (C4 lignin). Upon the addition of C4 lignin, the dispersion of carbon fiber into the matrix, and the adhesion between the carbon fiber and the matrix were greatly improved. As a result, the tensile strength of the CFRP prepared with C4 lignin was greater than that of the CFRP without lignan lignin (37.1 compared to 40.2 MPa). This value is close to that of CFRPs prepared with maleic anhydride-modified polypropylene (40.9 MPa), an existing compatibilizing agent. C4 lignin is a promising candidate for biomass-derived compatibilizing agents for polypropylene-based CFRPs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Lim LT, Auras R, Rubino M. Processing technologies for poly(lactic acid). Prog Polym Sci. 2008;33:820–52.

    CAS  Article  Google Scholar 

  2. 2.

    Ragauskas J, Williams CK, Davison HB, Britovsek G, Cairney J, Eckert AC, Frederick JW Jr., Hallett PJ, Leak JD, Liotta LC, Mielenz RJ, Murphy R, Templer R, Tschaplinski T. The path forward for biofuels and biomaterials. Science. 2206;311:484–9.

    Article  CAS  Google Scholar 

  3. 3.

    Uchikawa H, Sawaki D, Hanehara S. Influence of kind and added timing of organic admixture on the composition, structure and property of fresh cement paste. Cem Concr Res. 1995;25:353–64.

    CAS  Article  Google Scholar 

  4. 4.

    Mialon L, Pemba GA, Miller AS. Biorenewable polyethylene terephthalate mimics derived from lignin and acetic acid. Green Chem. 2010;12:1704–6.

    CAS  Article  Google Scholar 

  5. 5.

    Borges da Silva AE, Zabkova M, Araujo DJ, Cateto AC, Barreiro FM, Belgacem NM, Rodrigues EA. An integrated process to produce vanillin and lignin-based polyurethanes from Kraft lignin. Chem Eng Res Des. 2009;87:1276–92.

    CAS  Article  Google Scholar 

  6. 6.

    Umeyama T, Kadota N, Tezuka N, Matano Y, Imahori H. Photoinduced energy transfer in composites of poly[(p-phenylene-1,2-vinylene)-co-(p-phenylene-1,1vinylidene)] and single-walled carbon nanotubes. Chem Phys Lett. 2007;444:263–7.

    CAS  Article  Google Scholar 

  7. 7.

    Teng YN, Dallmeyer I, Kadla FJ. Effect of softwood kraft lignin fractionation on the dispersion of multiwalled carbon nanotubes. Ind Eng Chem Res. 2013;52:6311–7.

    CAS  Article  Google Scholar 

  8. 8.

    Liu Y, Gao L, Sun J. Noncovalent functionalization of carbon nanotubes with sodium lignosulfonate and subsequent quantum dot decoration. J Phys Chem C. 2007;111:1223–9.

    CAS  Article  Google Scholar 

  9. 9.

    Yang Q, Pan X, Huang X, Li K. Fabrication of high-concentration and stable aqueous suspensions of graphene nanosheets by noncovalent functionalization with lignin and cellulose derivatives. J Phys Chem C. 2010;114:3811–6.

    CAS  Article  Google Scholar 

  10. 10.

    Valentini L, Biagiotti J, Kenny MJ, Santucci S. Morphological characterization of single-walled carbon nanotube-PP composites. Compos Sci Technol. 2003;3:1149–53.

    Article  CAS  Google Scholar 

  11. 11.

    Lloyd MS, Vave B. Life cycle economic and environmental implications of using nanocomposites in automobiles. Environ Sci Technol. 2003;37:3458–66.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Karsli GN, Aytac A. Effects of maleated polypropylene on the morphology, thermal and mechanical properties of short carbon fiber reinforced polypropylene composites. Mater Des. 2011;32:4069–73.

    CAS  Article  Google Scholar 

  13. 13.

    Sakai H, Kuroda K, Muroyama S, Tsukegi T, Kakuchi R, Takada K, Hata A, Kojima R, Ogoshi T, Omichi M, Ninomiya K, Takahashi K. Alkylated alkali lignin for compatibilizing agents of carbon fiber reinforced plastics with polypropylene. Polym J. 2018;50:281–4.

    CAS  Article  Google Scholar 

  14. 14.

    Wong HK, Mohammed SD, Pickering JS, Brooks R. Effect of coupling agents on reinforcing potential of recycled carbon fiber for polypropylene composite. Compos Sci Technol. 2012;72:835–44.

    CAS  Article  Google Scholar 

  15. 15.

    Kakuchi R, Yamaguchi M, Endo T, Shibata Y, Ninomiya K, Ikai T, Maeda K, Takahashi K. Efficient and rapid direct transesterification reactions of cellulose with isopropenyl acetate in ionic liquids. RSC Adv. 2015;88:72071–4.

    Article  CAS  Google Scholar 

  16. 16.

    Granata A, Argyropoulos DS. 2-Chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane, a reagent for the accurate determination of the uncondensed and condensed phenolic moieties in lignins. J Agric Food Chem. 1995;43:1538–44.

    CAS  Article  Google Scholar 

  17. 17.

    Kada D, Koubaa A, Tabak G, Migneault S, Garnier B, Boudenne A. Tensile properties, thermal conductivity, and thermal stability of short carbon fiber reinforced polypropylene composites. Polym Compos. 2016. https://doi.org/10.1002/pc.24093.

    Article  CAS  Google Scholar 

  18. 18.

    Lin J-H, Huang C-L, Liu C-F, Chen C-K, Lin Z-I, Lou C-W. Polypropylene/short glass fibers composites: effects of coupling agents on mechanical properties, thermal behaviors, and morphology. Materials. 2015;8:8279–91.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Bhaskar J, Haq S, Yadaw SB. Evaluation and testing of mechanical properties of wood plastic composite. J Thermoplast Compos Mater. 2011;25:391–401.

    Article  CAS  Google Scholar 

Download references


This research was promoted by the COI program, “Construction of next-generation infrastructure using innovative materials—Realization of safe and secure society that can coexist with the Earth for centuries” supported by MEXT and JST. This study was also supported in part by an Advanced Low Carbon Technology Research and Development Program of the JST and the Cross-ministerial Strategic Innovation Promotion Program, also from the JST. This study was also partly supported by KAKENHI (18K14281) and Leading Initiative for Excellent Young Researchers from the Japan Society for the Promotion of Science.

Author information



Corresponding authors

Correspondence to Kosuke Kuroda or Kenji Takahashi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sakai, H., Kuroda, K., Tsukegi, T. et al. Butylated lignin as a compatibilizing agent for polypropylene-based carbon fiber-reinforced plastics. Polym J 50, 997–1002 (2018). https://doi.org/10.1038/s41428-018-0088-9

Download citation

Further reading