Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Soft materials based on colloidal self-assembly in ionic liquids

Abstract

Ionic liquids (ILs) have attracted much attention as dispersion media for colloidal systems as alternatives to organic solvents and electrolyte solutions. Although colloidal stability is an essential factor for determining the properties and performance of colloidal systems containing ILs, detailed mechanisms for colloidal stabilization have not yet been studied. In the first part of this paper, we highlight our fundamental studies on colloidal stability. Three different repulsive forces, electrostatic, solvation, and steric interactions, are examined for their effectiveness in stabilizing colloidal particles in ILs. In the second part of this report, we provide an overview of our recent studies on colloidal soft materials in the presence of ILs. On the basis of the suspended state of the silica colloid particles, two different soft materials, a colloidal gel and a colloidal glass, were prepared in ILs. Their functional properties, including ionic transport, rheological, and optical properties, are discussed in relation to the microstructures of the colloidal materials.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Marr PC, Marr AC. Ionic liquid gel materials: applications in green and sustainable chemistry. Green Chem. 2016;18:105–28.

    Article  Google Scholar 

  2. Carlin RT, Fuller J. Ionic liquid-polymer gel catalytic membrane. Chem Commun. 1997. p.1345–6.

  3. MacFarlane DR, Forsyth M, Howlett PC, Kar M, Passerini S, Pringle JM, et al. Ionic liquids and their solid-state analogues as materials for energy generation and storage. Nat Rev Mater. 2016;1:15005.

    CAS  Article  Google Scholar 

  4. Watanabe M, Thomas ML, Zhang S, Ueno K, Yasuda T, Dokko K. Application of ionic liquids to energy storage and conversion materials and devices. Chem Rev. 2017;117:7190–239.

    CAS  Article  Google Scholar 

  5. Cowan MG, Gin DL, Noble RD. Poly(ionic liquid)/ionic liquid ion-gels with high “free” ionic liquid content: platform membrane materials for CO2/light gas separations. Acc Chem Res. 2016;49:724–32.

    CAS  Article  PubMed  Google Scholar 

  6. Gu Y, Cussler EL, Lodge TP. ABA-triblock copolymer ion gels for CO2 separation applications. J Membr Sci. 2012;423-424:20–26.

    CAS  Article  Google Scholar 

  7. Ranjbaran F, Kamio E, Matsuyama H. Ion gel membrane with tunable inorganic/organic composite network for CO2 separation. Ind Eng Chem Res. 2017;56:12763–72.

    CAS  Article  Google Scholar 

  8. Susan MABH, Kaneko T, Noda A, Watanabe M. Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes. J Am Chem Soc. 2005;127:4976–83.

    CAS  Article  PubMed  Google Scholar 

  9. He Y, Boswell PG, Bühlmann P, Lodge TP. Ion gels by self-assembly of a triblock copolymer in an ionic liquid. J Phys Chem B. 2007;111:4645–52.

    CAS  Article  PubMed  Google Scholar 

  10. Yeon S-H, Kim K-S, Choi S, Cha J-H, Lee H. Characterization of PVdF(HFP) gel electrolytes based on 1-(2-hydroxyethyl)-3-methyl imidazolium ionic liquids. J Phys Chem B. 2005;109:17928–35.

    CAS  Article  PubMed  Google Scholar 

  11. Yasuda T, Nakamura S, Honda Y, Kinugawa K, Lee S-Y, Watanabe M. Effects of polymer structure on properties of sulfonated polyimide/protic ionic liquid composite membranes for nonhumidified fuel cell applications. ACS Appl Mater Interfaces. 2012;4:1783–90.

    CAS  Article  PubMed  Google Scholar 

  12. Ohno H, Yoshizawa M, Ogihara W. A new type of polymer gel electrolyte: zwitterionic liquid/polar polymer mixture. Electrochim Acta. 2003;48:2079–83.

    CAS  Article  Google Scholar 

  13. Le Bideau J, Viau L, Vioux A. Ionogels, ionic liquid based hybrid materials. Chem Soc Rev. 2011;40:907–25.

    Article  PubMed  Google Scholar 

  14. Wang P, Zakeeruddin SM, Comte P, Exnar I, Grätzel M. Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells. J Am Chem Soc. 2003;125:1166–7.

    CAS  Article  PubMed  Google Scholar 

  15. Liu AJ, Nagel SR. Jamming is not just cool any more. Nature. 1998;396:21–22.

    CAS  Article  Google Scholar 

  16. Stokes JR, Frith WJ. Rheology of gelling and yielding soft matter systems. Soft Matter. 2008;4:1133–40.

    CAS  Article  Google Scholar 

  17. Pusey PN, van Megen W. Phase behaviour of concentrated suspensions of nearly hard colloidal spheres. Nature. 1986;320:340.

    CAS  Article  Google Scholar 

  18. Endres F. Ionic liquids: solvents for the electrodeposition of metals and semiconductors. Chemphyschem. 2002;3:144–54.

    CAS  Article  Google Scholar 

  19. Dupont J, Fonseca GS, Umpierre AP, Fichtner PFP, Teixeira SR. Transition-metal nanoparticles in imidazolium ionic liquids: recycable catalysts for biphasic hydrogenation reactions. J Am Chem Soc. 2002;124:4228–9.

    CAS  Article  PubMed  Google Scholar 

  20. Fukushima T, Kosaka A, Ishimura Y, Yamamoto T, Takigawa T, Ishii N, et al. Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science. 2003;300:2072–4.

    CAS  Article  Google Scholar 

  21. Torimoto T, Tsuda T, Okazaki K, Kuwabata S. New frontiers in materials science opened by ionic liquids. Adv Mater. 2010;22:1196–221.

    CAS  Article  PubMed  Google Scholar 

  22. Israelachvili JN. Intermolecular and surface forces. 3rd ed. Burlington, MA, USA: Academic Press; 2011. p. 253–89.

    Google Scholar 

  23. Israelachvili JN. Intermolecular and surface forces. 3rd ed. Burlington, MA, USA: Academic Press; 2011. p. 291–340.

    Google Scholar 

  24. Ueno K, Inaba A, Kondoh M, Watanabe M. Colloidal stability of bare and polymer-grafted silica nanoparticles in ionic liquids. Langmuir. 2008;24:5253–9.

    CAS  Article  PubMed  Google Scholar 

  25. Lin MY, Lindsay HM, Weitz DA, Ball RC, Klein R, Meakin P. Universality in colloid aggregation. Nature. 1989;339:360–2.

    CAS  Article  Google Scholar 

  26. Ueno K, Hata K, Katakabe T, Kondoh M, Watanabe M. Nanocomposite ion gels based on silica nanoparticles and an ionic liquid: ionic transport, viscoelastic properties, and microstructure. J Phys Chem B. 2008;112:9013–9.

    CAS  Article  PubMed  Google Scholar 

  27. Khan SA, Zoeller NJ. Dynamic rheological behavior of flocculated fumed silica suspensions. J Rheol. 1993;37:1225–35.

    CAS  Article  Google Scholar 

  28. Ueno K, Imaizumi S, Hata K, Watanabe M. Colloidal interaction in ionic liquids: effects of ionic structures and surface chemistry on rheology of silica colloidal dispersions. Langmuir. 2009;25:825–31.

    CAS  Article  PubMed  Google Scholar 

  29. Ueno K, Kasuya M, Watanabe M, Mizukami M, Kurihara K. Resonance shear measurement of nanoconfined ionic liquids. Phys Chem Chem Phys. 2010;12:4066–71.

    CAS  Article  PubMed  Google Scholar 

  30. Israelachvili JN. Intermolecular and surface forces. 3rd ed. Burlington, MA, USA: Academic Press; 2011. p. 341–80.

    Google Scholar 

  31. Hayes R, Warr GG, Atkin R. Structure and nanostructure in ionic liquids. Chem Rev. 2015;115:6357–426.

    CAS  Article  PubMed  Google Scholar 

  32. Hayes R, Warr GG, Atkin R. At the interface: solvation and designing ionic liquids. Phys Chem Chem Phys. 2010;12:1709–23.

    CAS  Article  PubMed  Google Scholar 

  33. Smith JA, Werzer O, Webber GB, Warr GG, Atkin R. Surprising particle stability and rapid sedimentation rates in an ionic liquid. J Phys Chem Lett. 2010;1:64–68.

    CAS  Article  Google Scholar 

  34. Gao J, Ndong RS, Shiflett MB, Wagner NJ. Creating nanoparticle stability in ionic liquid [C4mim][BF4] by inducing solvation layering. ACS Nano. 2015;9:3243–53.

    CAS  Article  PubMed  Google Scholar 

  35. Zhang H, Dasbiswas K, Ludwig NB, Han G, Lee B, Vaikuntanathan S, Talapin DV. Stable colloids in molten inorganic salts. Nature. 2017;542:328.

    CAS  Article  PubMed  Google Scholar 

  36. Israelachvili JN. Intermolecular and surface forces. 3rd ed. Burlington, MA, USA: Academic Press; 2011. p. 133–49.

    Google Scholar 

  37. Ueno K, Sano Y, Inaba A, Kondoh M, Watanabe M. Soft glassy colloidal arrays in an ionic liquid: colloidal glass transition, ionic transport, and structural color in relation to microstructure. J Phys Chem B. 2010;114:13095–103.

    CAS  Article  PubMed  Google Scholar 

  38. Ueno K, Fukai T, Nagatsuka T, Yasuda T, Watanabe M. Solubility of poly(methyl methacrylate) in ionic liquids in relation to solvent parameters. Langmuir. 2014;30:3228–35.

    CAS  Article  PubMed  Google Scholar 

  39. Batista MLS, Neves CMSS, Carvalho PJ, Gani R, Coutinho JAP. Chameleonic behavior of ionic liquids and its impact on the estimation of solubility parameters. J Phys Chem B. 2011;115:12879–88.

    CAS  Article  PubMed  Google Scholar 

  40. Huang Y, Takata A, Tsujii Y, Ohno K. Semisoft colloidal crystals in ionic liquids. Langmuir. 2017;33:7130–6.

    CAS  Article  PubMed  Google Scholar 

  41. Unemoto A, Matsuo T, Ogawa H, Gambe Y, Honma I. Development of all-solid-state lithium battery using quasi-solidified tetraglyme-lithium bis(trifluoromethanesulfonyl)amide–fumed silica nano-composites as electrolytes. J Power Sources. 2013;244:354–62.

    CAS  Article  Google Scholar 

  42. Chen N, Zhang H, Li L, Chen R, Guo S. Ionogel electrolytes for high‐performance lithium batteries: a review. Adv Energy Mater. 2018;8:1702675.

    Article  CAS  Google Scholar 

  43. Ueki T. Stimuli-responsive polymers in ionic liquids. Polym J. 2014;46:646–55.

    CAS  Article  Google Scholar 

  44. Ueno K, Inaba A, Ueki T, Kondoh M, Watanabe M. Thermosensitive, soft glassy and structural colored colloidal array in ionic liquid: colloidal glass to gel transition. Langmuir. 2010;26:18031–8.

    CAS  Article  PubMed  Google Scholar 

  45. Ueno K, Inaba A, Sano Y, Kondoh M, Watanabe M. A soft glassy colloidal array in ionic liquid, which exhibits homogeneous, non-brilliant and angle-independent structural colours. Chem Commun. 2009. p.3603–5.

  46. Jin C, Meng X, Cheng B, Li Z, Zhang D. Photonic gap in amorphous photonic materials. Phys Rev B. 2001;63:195107.

    Article  CAS  Google Scholar 

  47. Ueno K, Fukai T, Watanabe M. Thermosensitive soft glassy colloidal arrays of block-copolymer-grafted silica nanoparticles in an ionic liquid. Polym J. 2015;48:289–94.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhide Ueno.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ueno, K. Soft materials based on colloidal self-assembly in ionic liquids. Polym J 50, 951–958 (2018). https://doi.org/10.1038/s41428-018-0083-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-018-0083-1

Further reading

Search

Quick links