Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Synthesis and thermal properties of poly(oligomethylene-cycloalkylene)s with regulated regio- and stereochemistry

Abstract

This article focuses on the synthesis and thermal properties of poly(oligomethylene-cyclopentylene)s and poly(oligomethylene-cyclohexylene)s with regulated regio- and stereochemistry. Pd complexes with diimine ligands promote controlled isomerization polymerization of 4-alkylcyclopentenes to afford polymers with 1,3-trans-cyclopentylene groups and oligomethylene spacers alternating along the polymer chain. Pd complexes with a C2 symmetric structure enable isospecific polymerization of 4-alkylcyclopentenes, and the resultant isotactic polymers show liquid-crystalline properties. Cyclopolymerization of 1,6-heptadiene by bis(imino)pyridine Fe and Co catalysts produces poly(ethylene-1,2-cyclopentylene) with cis and trans-stereochemistry, respectively. Synthesis of poly(oligomethylene-1,4-cyclohexylene)s with trans or cis structure can be achieved by Pd-catalyzed isomerization polymerization of alkenylcyclohexanes or methylenecyclohexanes. The polymers with 1,4-trans-cyclohexylene show a high melting point that depends on the length of the oligomethylene spacer in the polymer. The thermal properties of the poly(oligomethylene-cyclopentylene)s and poly(oligomethylene-cyclohexylene)s are compared to those of previously reported polymers with different regio- or stereochemistry.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Yamazaki M. Industrialization and application development of cyclo-olefin polymer. J Mol Catal A. 2004;213:81–87.

    Article  CAS  Google Scholar 

  2. Dragutan V, Streck R. Advances in cycloolefin polymerization. In: Vasile C, editor. Handbook of polyolefins. 2nd ed. New York: Marcel Dekker; 2000. pp. 99–137.

  3. Li X, Hou Z. Organometallic catalysts for copolymerization of cyclic olefins. Coord Chem Rev. 2008;252:1842–69.

    Article  CAS  Google Scholar 

  4. Takeuchi D. Recent progress in olefin polymerization catalyzed by transition metal complexes: new catalysts and new reactions. Dalton Trans. 2010;39:311–28.

    Article  CAS  Google Scholar 

  5. Takeuchi D. Novel controlled polymerization of cyclo-olefins, dienes, and trienes by utilizing reaction properties of late transition metals. Macromol Chem Phys. 2011;212:1545–51.

    Article  CAS  Google Scholar 

  6. Takeuchi D. Stereo-controlled synthesis of polyolefins with cycloalkane groups by using transition metals. Polym J. 2012;44:919–28.

    Article  CAS  Google Scholar 

  7. Takeuchi D, Osakada K. Controlled isomerization polymerization of olefins, cycloolefins, and dienes. Polym. 2016;82:392–405.

    Article  CAS  Google Scholar 

  8. Resconi L, Waymouth RM. Diastereoselectivity in the homogeneous cyclopolymerization of 1,5-hexadiene. J Am Chem Soc. 1990;112:4953–4.

    Article  CAS  Google Scholar 

  9. Coates GW, Waymouth RM. Chiral polymers via cyclopolymerization. J Mol Catal. 1992;76:189–94.

    Article  CAS  Google Scholar 

  10. Coates GW, Waymouth RM. Enantioselective cyclopolymerization of 1,5-hexadiene catalyzed by chiral zirconocenes: a novel strategy for the synthesis of optically active polymers with chirality in the main chain. J Am Chem Soc. 1993;115:91–98.

    Article  CAS  Google Scholar 

  11. Mitani M, Oouchi K, Hayakawa M, Yamada T, Mukaiyama T. Stereoselective cyclopolymerization of 1,5-hexadiene using novel bis(ferrocenyl)zirconocene catalyst. Chem Lett. 1995;24:905–6.

  12. Sernetz FG, Mülhaupt R, Waymouth RM. Homo-, co-, and terpolymerization of 1,5-hexadiene using a methylalumoxane activated mono-cp-amido-complex. Polym Bull. 1997;38:141–8.

    Article  CAS  Google Scholar 

  13. Jayaratne KC, Keaton RJ, Henningsen DA, Sita LR. Living Ziegler-Natta cyclopolymerization of nonconjugated dienes: new class of microphase-separated polyolefin block copolymers via a tandem polymerization/cyclopolymerization strategy. J Am Chem Soc. 2000;122:10490–1.

    Article  CAS  Google Scholar 

  14. Kim I, Shin YS, Lee JK, Won M-S. Cyclopolymerization of 1,5-hexadiene catalyzed by various stereospecific metallocene compounds. J Polym Sci A. 2000;38:1520–7.

    Article  CAS  Google Scholar 

  15. Napoli M, Costabile C, Pragliola S, Longo P. Closing cycles with C 2-symmetric Ziegler-Natta polymerization catalysts. Macromolecules. 2005;38:5493–7.

    Article  CAS  Google Scholar 

  16. Yeori A, Goldberg I, Shuster M, Kol M. Diastereomerically-specific zirconium complexes of chiral salan ligands: isospecific polymerization of 1-hexene and 4-methyl-1-pentene and cyclopolymerization of 1,5-hexadiene. J Am Chem Soc. 2006;128:13062–3.

    Article  CAS  PubMed  Google Scholar 

  17. Yeori A, Goldberg I, Kol M. Cyclopolymerization of 1,5-hexadiene by enantiomerically-pure zirconium salan complexes. Polymer optical activity reveals α-olefin face preference. Macromolecules. 2007;40:8521–3.

    Article  CAS  Google Scholar 

  18. Volkis V, Averbuj C, Eisen MS. Reactivity of group 4 benzamidinate complexes towards mono- and bis-substituted silanes and 1,5-hexadiene. J Organomet Chem. 2007;692:1940–50.

    Article  CAS  Google Scholar 

  19. Choo TN, Waymouth RM. The dual-site alternating cyclocopolymerization of 1,3-butadiene with ethylene. J Am Chem Soc. 2003;125:8970–1.

    Article  CAS  PubMed  Google Scholar 

  20. Natta G, Dall’Asta G, Mazzanti G, Pasquon I, Valvassori A, Zambelli A. Crystalline alternating ethylene-cyclopentene copolymers and other ethylene-cycloolefin copolymers. Makromol Chem. 1962;54:95–101.

    Article  CAS  Google Scholar 

  21. Lavoie AR, Ho MH, Waymouth RM. Alternating stereospecific copolymerization of cyclopentene and ethylene with constrained geometry catalysts. Chem Commun. 864–5 (2003).

  22. Fujita M, Coates GW. Synthesis and characterization of alternating and multiblock copolymers from ethylene and cyclopentene. Macromolecules. 2002;35:9640–7.

    Article  CAS  Google Scholar 

  23. Okada T, Takeuchi D, Shishido A, Ikeda T, Osakada K. Isomerization polymerization of 4-alkylcyclopentenes catalyzed by Pd complexes: hydrocarbon polymers with isotactic-type stereochemistry and liquid-crystalline properties. J Am Chem Soc. 2009;131:10852–3.

    Article  CAS  PubMed  Google Scholar 

  24. Park S, Takeuchi D, Osakada K. Pd complex-promoted cyclopolymerization of functionalized α,ω-dienes and copolymerization with ethylene to afford polymers with cyclic repeating units. J Am Chem Soc. 2006;128:3510–1.

    Article  CAS  PubMed  Google Scholar 

  25. Park S, Okada T, Takeuchi D, Osakada K. Cyclopolymerization and copolymerization of functionalized 1,6-heptadienes catalyzed by Pd complexes: mechanism and application to physical-gel formation. Chem Eur J. 2010;16:8662–78.

    Article  CAS  PubMed  Google Scholar 

  26. Okada T, Park S, Takeuchi D, Osakada K. Pd-catalyzed polymerization of dienes that involves chain-walking isomerization of the growing polymer end: synthesis of polymers composed of polymethylene and five-membered-ring units. Angew Chem Int Ed. 2007;46:6141–3.

    Article  CAS  Google Scholar 

  27. Okada T, Takeuchi D, Osakada K. Cyclopolymerization of monoterminal 1,6-dienes catalyzed by Pd complexes. Macromolecules. 2010;43:7998–8006.

    Article  CAS  Google Scholar 

  28. Motokuni K, Takeuchi D, Osakada K. Cyclopolymerization of 1,6-heptadienes and 1,6,11-dodecatrienes having acyclic substituents catalyzed by Pd-diimine complexes. Polym Bull. 2015;72:583–97.

    Article  CAS  Google Scholar 

  29. Takeuchi D, Matsuura R, Park S, Osakada K. Cyclopolymerization of 1,6-heptadienes catalyzed by iron and cobalt complexes: synthesis of polymers with trans- or cis-fused 1,2-cyclopentanediyl groups depending on the catalyst. J Am Chem Soc. 2007;129:7002–3.

    Article  CAS  PubMed  Google Scholar 

  30. Takeuchi D, Matsuura R, Fukuda Y, Osakada K. Selective cyclopolymerization of α,ω-dienes and copolymerization with ethylene catalyzed by Fe and Co complexes. Dalton Trans. 2009;8955–62.

  31. Auriemma F, De Rosa C, Esposito S, Coates GW, Fujita M. Alternating isotactic ethylene–cyclopentene copolyer: a crystalline engineering plastomer including high amounts of structural disorder. J Am Chem Soc. 2005;127:2850–1.

    Article  CAS  Google Scholar 

  32. Auriemma F, De Rosa C, Esposito S, Coates GW, Fujita M. Crystal structure of alternating isotactic ethylene–cyclopentene copolymer. Macromolecules. 2005;38:7416–29.

    Article  CAS  Google Scholar 

  33. de Ballesteros OR, Venditto V, Auriemma F, Guerra G, Resconi L, Waymouth R, Mogstad A-L. Thermal and structural characterization of poly(methylene-1,3-cyclopentane) samples of different microstructures. Macromolecules. 1995;28:2383–8.

    Article  Google Scholar 

  34. de Ballesteros OR, Cavallo L, Auriemma F, Guerra G. Conformational analysis of poly(methylene-1,3-cyclopentane) and chain conformation in the crystalline phase. Macromolecules. 1995;28:7355–62.

    Article  Google Scholar 

  35. Naga N, Yabe T, Sawaguchi A, Sone M, Noguchi K, Murase S. Liquid crystalline features in a polyolefin of poly(methylene-1,3-cyclopentane). Macromolecules. 2008;41:7448–52.

    Article  CAS  Google Scholar 

  36. Naga N, Shimura H, Sone M. Liqiud crystalline features of optically active poly(methylene-1,3-cyclopentane). Macromolecules. 2009;42:7631–3.

    Article  CAS  Google Scholar 

  37. Edson JB, Coates GW. Cyclopolymerization of nonconjugated dienes with a tridentate phenoxyamine hafnium complex supported by an sp3-C donor: isotactic enchainment and diastereoselective cis-ring closure. Macromol Rapid Commun. 2009;30:1900–6.

    Article  CAS  PubMed  Google Scholar 

  38. Crawford KE, Sita LR. Stereoengineering of poly(1,3-methylenecyclohexane) via two-state living coordination polymerization of 1,6-heptadiene. J Am Chem Soc. 2013;135:8778–81.

    Article  CAS  PubMed  Google Scholar 

  39. Crawford KE, Sita LR. De novo design of a new class of “hard–soft” amorphous, microphase-separated, polyolefin block copolymer thermoplastic elastomers. ACS Macro Lett. 2015;4:921–5.

    Article  CAS  Google Scholar 

  40. Wang W, Fujiki M, Nomura K. Copolymerization of ethylene with cyclohexene (CHE) catalyzed by nonbridged half-titanocenes containing aryloxo ligand: notable effect of both cyclopentadienyl and anionic donor ligand for efficient CHE incorporation. J Am Chem Soc. 2005;127:4582–3.

    Article  CAS  PubMed  Google Scholar 

  41. Satoh K, Sugiyama H, Kamigaito M. Biomass-derived heat-resistant alicyclic hydrocarbon polymers: poly(terpenes) and their hydrogenated derivatives. Green Chem. 2006;8:878–82.

    Article  CAS  Google Scholar 

  42. Hamilton JG, Ivin KJ, Rooney JJ. Ring-opening polymerisation of bicyclo[2.2.2]oct-2-ene. Br Polym J. 1985;17:41–42.

    Article  CAS  Google Scholar 

  43. Thu CT, Bastelberger T, Höcker H. On the polymerization of bicyclo[4.2.0]octa-7-ene by a metathesis catalyst and by tungsten carbenes. Makromol Chem Rapid Commun. 1981;2:7–9.

    Article  Google Scholar 

  44. Takeuchi D. Precise isomerization polymerization of alkenylcyclohexanes: stereoregular polymers containing six-membered rings along the polymer chain. J Am Chem Soc. 2011;133:11106–9.

    Google Scholar 

  45. Takeuchi D, Watanabe K, Sogo K, Osakada K. Polymerization of methylenecyclohexanes catalyzed by diimine-Pd complex. Polymers Having trans- or cis-1,4- and trans-1,3-cyclohexylene groups. Organometallics. 2015;34:3007–11.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

DT is grateful to Professor Kohtaro Osakada of the Tokyo Institute of Technology for helpful suggestions and discussion.

Funding

This work was supported by JSPS KAKENHI Grant Numbers JP18750094 and JP2265012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Takeuchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Takeuchi, D. Synthesis and thermal properties of poly(oligomethylene-cycloalkylene)s with regulated regio- and stereochemistry. Polym J 50, 573–578 (2018). https://doi.org/10.1038/s41428-018-0073-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-018-0073-3

Further reading

Search

Quick links