Molecular weight-dependent physisorption of non-charged poly(9,9-dioctylfluorene) onto the neutral surface of cuboidal γ-alumina in toluene

Abstract

To understand how polymers physisorb onto solid surfaces, we investigated the physisorption behavior of non-charged, semiflexible poly(9,9-dioctylfluorene) (PF8) with three different number-average degrees of polymerization (DPn) as photoluminescent and chromophoric probes onto cuboidal γ-alumina in toluene at 5, 25, and 50 °C. PF8 revealed noticeable DPn and temperature dependencies in its physisorption behaviors. Molecular mechanics (MM)/molecular dynamics (MD) simulations [consistent valence force field (CVFF)] and Møller–Plesset second-order perturbation theory (MP2) with 6-31 G(d,p) calculations suggested that the PF8 in toluene has multiple interactions from CH/π to C–H/O interactions on the (110) surface of γ-alumina. The competition between multiple intermolecular CH/π and C–H/O interactions was crucial for the spontaneous physisorption of PF8 to occur in the presence of a solvent quantity of toluene. Calculations by time-dependent density functional theory (TD-DFT) with Becke three parameter Lee-Yang-Par (B3LYP) method and 6–31 G(d,p) basis set of a model fluorene 9-mer indicated that the ππ* absorption wavelength largely depends on the regularity of the dihedral angles between fluorene rings, while the intensity and spectral width of the ππ* absorption band are largely influenced by the regularity of the dihedral angles. Solution-phase physisorption systems are a result of the inherent nature of several competitive weak intermolecular interactions coexisting among the polymers, surface, and solvents.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Parfitt GD, Rochester CH, Editors. Adsorption from solution at the solid/liquid interface. New York: Academic; 1983.

    Google Scholar 

  2. 2.

    Jones RAL, Richards RW. Polymers at surface and interfaces. Cambridge, UK: Cambridge University Press; 1999.

    Google Scholar 

  3. 3.

    Butt H-J, Graf K, Kappl M. Physics and chemistry of interfaces. Germany: Wiley–VCH, Weinheim; 2006.

    Google Scholar 

  4. 4.

    Israelachvili YN. Intermolecular and surface forces. 3rd edn. New York: Academic; 2011.

    Google Scholar 

  5. 5.

    Langmuir I. The adsorption of gases on plane surface. J Am Chem Soc. 1918;40:1361–403.

    Article  CAS  Google Scholar 

  6. 6.

    Brunauer S, Emmett PH, Teller E. Adsorption of gases in muitimolecular layers. J Am Chem Soc. 1938;60:309–19.

    Article  CAS  Google Scholar 

  7. 7.

    Simha R, Frish HL, Eirich RR. The adsorption of flexible macromolecules. J Phys Chem. 1953;57:584–9.

    Article  CAS  Google Scholar 

  8. 8.

    Dąbrowski A. Adsorption–from theory to practice. Adv Colloid Interface Sci. 2001;93:135–224.

    Article  PubMed  Google Scholar 

  9. 9.

    Sagiv J. Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces. J Am Chem Soc. 1980;102:92–8.

    Article  CAS  Google Scholar 

  10. 10.

    Netzer N, Sagiv J. A new approach to construction of artificial monolayer assemblies. J Am Chem Soc. 1983;105:674–6.

    Article  CAS  Google Scholar 

  11. 11.

    Park J-W, Park YJ, Jun C-H. Post-grafting of silica surfaces with pre-functionalized organosilanes: new synthetic equivalents of conventional trialkoxysilanes. Chem Commun. 2011;47:4860–71.

    Article  CAS  Google Scholar 

  12. 12.

    Guo G, Naito M, Fujiki M, Saxena A, Okoshi K, Yang Y, Ishikawa M, Hagihara T. Room-temperature one-step immobilization of rod-like helical polymer onto hydrophilic substrates. Chem Commun. 2004;276–7.

  13. 13.

    Yamamoto K, Otsuka H, Takahara A. Preparation of novel polymer hybrids from imogolite nanofiber. Polym J. 2007;39:1–15.

    Article  CAS  Google Scholar 

  14. 14.

    Porter MD, Bright TB, Allara DL, Chidsey CED. Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry. J Am Chem Soc. 1987;109:3559–73.

    Article  CAS  Google Scholar 

  15. 15.

    Berndt P, Kurihara K, Kunitake T. Adsorption of poly(styrenesulfonate) onto an ammonium monolayer on mica: A surface forces study. Langmuir. 1992;113:2486–90.

    Article  Google Scholar 

  16. 16.

    Kumar A, Whiteside GM. Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol “ink” followed by chemical etching. Appl Phys Lett. 1993;63:2002–4.

    Article  CAS  Google Scholar 

  17. 17.

    Lvov Y, Decher G, Möhwald H. Assembly, structural characterization, and thermal behavior of layer-by-layer deposited ultrathin films of poly(vinyl sulfate) and poly(allylamine). Langmuir. 1993;9:481–6.

    Article  CAS  Google Scholar 

  18. 18.

    Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J Chem Soc Chem Commun. 1994;1801–2.

  19. 19.

    Lvov Y, Ariga K, Ichinose I, Kunitake T. Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption. J Am Chem Soc. 1995;117:6117–23.

    Article  CAS  Google Scholar 

  20. 20.

    Kotov NA, Dekany I, Fendler JH. Layer-by-layer self-assembly of polyelectrolyte–semiconductor nanoparticle composite films. J Phys Chem. 1995;99:13065–9.

    Article  CAS  Google Scholar 

  21. 21.

    Decher G. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science. 1997;277:1232–7.

    Article  CAS  Google Scholar 

  22. 22.

    Caruso F. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science. 1998;282:1111–4.

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Ejaz M, Yamamoto S, Ohno K, Tsujii Y, Fukuda T. Controlled graft polymerization of methyl methacrylate on silicon substrate by the combined use of the Langmuir-Blodgett and atom transfer radical polymerization techniques. Macromolecules. 1998;31:5934–6.

    Article  CAS  Google Scholar 

  24. 24.

    Zhao B, Brittain WJ. Polymer brushes: surface-immobilized macromolecules. Prog Polym Sci. 2000;25:677–710.

    Article  CAS  Google Scholar 

  25. 25.

    Matyjaszewski K, Xia J. Atom transfer radical polymerization. Chem Rev. 2001;101:2921–90.

    Article  CAS  Google Scholar 

  26. 26.

    Pyun J, Matyjaszewski K. Synthesis of nanocomposite organic/inorganic hybrid materials using controlled “living” radical polymerization. Chem Mater. 2001;13:3436–48.

    Article  CAS  Google Scholar 

  27. 27.

    Zhou F, Huck WTS. Surface grafted polymer brushes as ideal building blocks for “smart” surface. Phys Chem Chem Phys. 2006;8:3815–23.

    Article  CAS  Google Scholar 

  28. 28.

    Mizukami M, Kurihara K. Macrocluster formation of alcohol on silica surface in cyclohexane: analysis of interfacial energy between adsorption layer and bulk solution. E J Surf Sci Nanotech. 2006;4:244–8.

    Article  CAS  Google Scholar 

  29. 29.

    Tsubokawa N. Surface grafting of polymers onto nanoparticles in a solvent-free dry-system and applications of polymer-grafted nanoparticles as novel functional hybrid materials. Polym J. 2007;39:983–1000.

    Article  CAS  Google Scholar 

  30. 30.

    Budarin VL, Clark JH, Hale SE, Tavener SJ, Mueller KT, Washton NM. NMR and IR study of fluorobenzene and hexafluorobenzene adsorbed on alumina. Langmuir. 2007;23:5412–8.

  31. 31.

    Pietropaolo A, Wang Y, Nakano T. Predicting the switchable screw sense in fluorene-based polymers. Angew Chem Int Ed. 2015;54:2688–92.

    Article  CAS  Google Scholar 

  32. 32.

    Zhang W, Gomez ED, Milner ST. Surface-induced chain alignment of semiflexible polymers. Macromolecules. 2016;49:963–71.

    Article  CAS  Google Scholar 

  33. 33.

    Grell M, Bradley DDC, Long X, Chamberlain T, Inbasekaran M, Woo EP, Soliman M. Chain geometry, solution aggregation and enhanced dichroism in the liquid crystalline conjugated polymer poly(9,9-dioctylfluorene). Acta Polym. 1998;49:439–44.

    Article  CAS  Google Scholar 

  34. 34.

    Grell M, Bradley DDC, Ungar G, Hill J, Whitehead KS. Interplay of physical structure and photophysics for a liquid crystalline polyfluorene. Macromolecules. 1999;32:5810–7.

    Article  CAS  Google Scholar 

  35. 35.

    Scherf U, List EJW. Semiconducting polyfluorenes towards reliable structure-property relationships. Adv Mater. 2002;14:477–87.

    Article  CAS  Google Scholar 

  36. 36.

    Knaapila M, Garamus VM, Dias FB, Almásy L, Galbrecht F, Charas A, Morgado J, Burrows HD, Scherf U, Monkman AP. Influence of solvent quality on the self-organization of archetypical hairy rods-branched and linear side chain polyfluorenes: rodlike chains versus “beta-sheets” in solution. Macromolecules. 2006;39:6505–12.

    Article  CAS  Google Scholar 

  37. 37.

    Chen J-H, Chang C-S, Chang Y-X, Chen C-Y, Chen H-L, Chen S-A. Gelation and its effect on the photophysical behavior of poly(9,9-dioctylfluorene-2,7-diyl) in toluene. Macromolecules. 2009;42:1306–14.

    Article  CAS  Google Scholar 

  38. 38.

    Cone CW, Cheng RR, Makarov DE, V Bout DA. Molecular weight effect on the formation of β-phase poly(9,9-dioctylfluorene) in dilute solutions. J Phys Chem B. 2011;115:12380–5.

    Article  CAS  PubMed  Google Scholar 

  39. 39.

    Evans RC, Marr PC. Chain confinement promotes β-phase formation in polyfluorene-based photoluminescent ionogels. Chem Commun. 2012;48:3742–4.

    Article  CAS  Google Scholar 

  40. 40.

    Liu C, Wang Q, Tian H, Liu J, Geng Y, Yan D. Morphology and structure of the β-phase crystals of monodisperse polyfluorenes. Macromolecules. 2013;46:3025–30.

    Article  CAS  Google Scholar 

  41. 41.

    Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Aggregation-induced emission: together we shine, united we soar! Chem Rev. 2015;115:11718–940.

    Article  CAS  PubMed  Google Scholar 

  42. 42.

    Taguchi M, Suzuki N, Fujiki M. Intramolecular CH/π interaction of poly(9,9-dialkylfluorene)s in solutions: Interplay of the fluorene ring and alkyl side chains revealed by 2D 1H-1H NOESY NMR and 1D 1H-NMR experiments. Polym J. 2013;45:1047–57.

    Article  CAS  Google Scholar 

  43. 43.

    Suzuki N, Matsuda T, Nagai T, Yamazaki K, Fujiki M. Investigation of the intra-CH/π interaction in dibromo-9,9′-dialkylfluorenes. Cryst Growth Des. 2016;16:6593–9.

    Article  CAS  Google Scholar 

  44. 44.

    Nakao A, Fujiki M. Visualizing spontaneous physisorption of non-charged π-conjugated polymers onto neutral surfaces of spherical silica in nonpolar solvents. Polym J. 2015;47:434–42.

    Article  CAS  Google Scholar 

  45. 45.

    Nakao A. Molecular weight dependency of physisorption behavior. In: Elucidation of physisorption behaviors of π-conjugated polymers and characterization thereof, Chapter 3. PhD thesis, Nara Institute of Science and Technology; 2015, pp 64–96.

  46. 46.

    Bhowmik R, Katti KS, Katti D. Molecular dynamics simulation of hydroxyapatite–polyacrylic acid interfaces. Polym (Guildf). 2007;48:664–74.

    Article  CAS  Google Scholar 

  47. 47.

    Møller C, Plesset MS. Note on an approximation treatment for many-electron systems. Phys Rev. 1934;46:618–22.

    Article  Google Scholar 

  48. 48.

    Head-Gordon M, Pople JA, Frisch MJ. MP2 energy evaluation by direct methods. Chem Phys Lett. 1988;153:503–6.

    Article  CAS  Google Scholar 

  49. 49.

    Nishio M, Hirota M, Umezawa Y. The CH/π interaction: evidence, nature, and consequences. New York: John Wiley & Sons; 1998.

    Google Scholar 

  50. 50.

    Tsuzuki S, Fujii A. Nature and physical origin of CH/π interaction: significant difference from conventional hydrogen bonds. Phys Chem Chem Phys. 2008;10:2584–94.

    Article  CAS  PubMed  Google Scholar 

  51. 51.

    Takahashi O, Kohno Y, Nishio M. Relevance of weak hydrogen bonds in the conformation of organic compounds and bioconjugates: Evidence from recent experimental data and high-level ab initio MO calculations. Chem Rev. 2010;110:6049–76.

    Article  CAS  PubMed  Google Scholar 

  52. 52.

    Sutor DJ. The CH···O hydrogen bond in crystals. Nature. 1962;195:68–9.

    Article  CAS  Google Scholar 

  53. 53.

    Desiraju GR. The C–H···O hydrogen bond: structural implications and supramolecular design. Acc Chem Res. 1996;29:441–9.

    Article  CAS  PubMed  Google Scholar 

  54. 54.

    Gu Y, Kar T, Scheiner S. Fundamental properties of the CH···O interaction: is it a true hydrogen bond? J Am Chem Soc. 1999;121:9411–22.

    Article  CAS  Google Scholar 

  55. 55.

    Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev. 1964;136:B864–71.

    Article  Google Scholar 

  56. 56.

    Marques MAL, Ullrich CA, Nogueira F, Rubio A, Burke K, Gross EKU, Editors. Time-dependent density functional theory. Berlin, Germany: Springer-Verlag; 2006.

    Google Scholar 

  57. 57.

    Ullrich C. Time-dependent density-functional theory: concepts and applications. Oxford: Oxford University Press; 2012.

    Google Scholar 

  58. 58.

    Hildebrand JH, Scott RH. The solubility of nonelectrolytes: monograph series. American Chemical Society, No. 17; 2012.

  59. 59.

    Hansen CM. The three dimensional solubility parameter and solvent diffusion coefficient. Copenhagen: Danish Technical Press; 1967.

    Google Scholar 

  60. 60.

    Wu L, Sato T, Tang. H-Z, Fujiki M. Conformation of a polyfluorene derivative in dolution. Macromolecules. 2004;37:6183–8.

    Article  CAS  Google Scholar 

  61. 61.

    Shiraki T, Shindome S, Toshimitsu F, Fujigaya T, Nakashima N. Strong main-chain length-dependence for the β-phase formation of oligofluorenes. Polym Chem. 2015;6:5103–9.

    Article  CAS  Google Scholar 

  62. 62.

    Marciniak J, Bakowicz J, Dobrowolski MA, Dziubek KF, Kazmierczak M, Paliwoda D, Rajewski KW, Sobczak S, Stachowicz M, Katrusiak A. Most frequent organic interactions compressed in toluene. Cryst Growth Des. 2016;16:1435–41.

    Article  CAS  Google Scholar 

  63. 63.

    Nakano Y, Liu Y, Fujiki M. Ambidextrous circular dichroism and circularly polarised luminescence from poly(9,9-di-n-decylfluorene) by terpene chirality transfer. Polym Chem. 2010;1:460–9.

    Article  CAS  Google Scholar 

  64. 64.

    Bondi A. van der Waals volumes and radii. J Phys Chem. 1964;68:441–51.

    Article  CAS  Google Scholar 

  65. 65.

    Rowland RS, Taylor R. Intermolecular nonbonded contact distances in organic crystal structures: comparison with distances expected from van der Waals radii. J Phys Chem. 1996;100:7384–91.

    Article  CAS  Google Scholar 

  66. 66.

    Guo G, Suzuki N, Fujiki M. Oligo- and polyfluorenes meet cellulose alkyl esters: Retention, inversion, and racemization of circularly polarized luminescence (CPL) and circular dichroism (CD) via intermolecular C-H/O=C interactions. Macromolecules. 2017;50:1778–89.

    Article  CAS  Google Scholar 

  67. 67.

    Guo S, Kamite H, Suzuki N, Wang L, Ohkubo A, Fujiki M. Ambidextrous chirality transfer capability from cellulose tris(phenylcarbamate) to nonhelical chainlike luminophores: Achiral solvent-driven helix-helix transition of oligo- and polyfluorenes revealed by sign inversion of circularly polarized luminescence and circular dichroism spectra. Biomacromolecules. 2018;19:449–59.

    Article  CAS  PubMed  Google Scholar 

  68. 68.

    Saxena A, Guo G, Fujiki M, Yang Y, Ohira A, Okoshi K, Naito M. Helical polymer command surface: Thermodriven chiroptical transfer and amplification in binary polysilane film system. Macromolecules. 2004;37:3081–3.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

KY acknowledges Profs. Hiroshi Fujisawa, Hironari Kamikubo, and Hiroharu Ajiro for stimulating discussion and profession guidance throughout his doctoral course work. We thank Noritake Koike and Shohei Katao for assistance with the SEM and WAXD observations and analyses. KY thanks Daichi Hirose at Dassault Systemes Biovia Co. (Tokyo, Japan) for generous technical help with the MM/MD simulations. KY acknowledges financial support from the NAIST Presidential Special Fund.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michiya Fujiki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yamazaki, K., Nakao, A., Suzuki, N. et al. Molecular weight-dependent physisorption of non-charged poly(9,9-dioctylfluorene) onto the neutral surface of cuboidal γ-alumina in toluene. Polym J 50, 865–877 (2018). https://doi.org/10.1038/s41428-018-0046-6

Download citation

Search