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Abstract
We propose a novel concept for cellular scaffolds with 2D-patterned mechanical properties. Thin films of glassy polystyrene
(PS) with thicknesses ranging from 100 nm to 1 μm were prepared on epoxy resin-based line and space (L&S) patterned
substrates. Although the outermost surface of PS on the L- and S-regions was sufficiently flat at the same level, the
mechanical responses differed depending on the presence of the underlying resin foundation. The initial cell adhesion and
spreading and the proliferation on the scaffolds were affected by the 2D-patterned mechanical properties, that is, cellular
behavior was suppressed on mechanically unstable S-regions.

Introduction

Recently, in vitro cell culture devices made from synthetic
polymers have attracted considerable attention [1–6]. Gen-
erally, adherent cells require suitable scaffolds [7–9] and
physiologically active substances [10, 11] in a cell-culture
environment to maintain their original functions. However,
some external humoral factors may cause serious damage to
cells [11–13]. Therefore, the regulation of cell functions
[1, 6, 14–16] and the collection of cultured cells [17] by
only tuning the structural and physical properties of poly-
meric scaffolds are important for further advances in the
biotechnology and biomedical fields. A typical example of
this is to prepare a cell sheet on the basis of the change in
aggregation state of a thermoresponsive polymer in a
scaffold [17, 18]. Poly(N-isopropylacrylamide) (PNIPAAm)
starts to dissolve in water at ~305 K [19]. Thus, a layer of
cultured cells on PNIPAAm can be gently detached by
cooling them to this temperature, without the use of
digestive enzymes or denaturing treatments. This technol-
ogy contributes considerably to the regenerative medicine
field combined with cell engineering using induced

pluripotent stem (iPS) cells [20], resulting in the generation
of various types of tissues from exfoliated cell sheets.

The physical properties, like the mechanical properties,
of polymeric scaffolds are also one of the key factors reg-
ulating the functions of cells cultured on the scaffolds [1,
14–16, 21–27]. In most cases, the static elastic modulus of
the polymeric scaffolds is set in the kPa range, mimicking a
typical extra cellular matrix (ECM) [28, 29]. In addition, the
temperature-responsive dynamic elastic change has also
been used to control cellular functions [23]. Therein, the
morphology of myoblasts on a cross-linked poly(ε-capro-
lactone) scaffold depended on the crystal-amorphous tran-
sition, ranging from a few MPa to several tens of MPa.

The mechanical properties not only in the bulk but also at
the surface [30–32] play a key role in cell regulation. We
recently studied the effect of surface mechanical properties
on cellular phenomena for thin films made from typical
glassy polymers of polystyrene (PS) [33] and poly(methyl
methacrylate) (PMMA) [34]. The initial adhesion of L929
mouse fibroblasts on the films prepared on glass substrates
was insensitive to the surface modulus, which ranged from
GPa to MPa. However, in the case of bilayer scaffolds
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composed of glassy polymers on rubbery polyisoprene (PI),
the cell adhesion and spreading were dependent on the
thickness of the upper glassy layer if it became thinner than
a threshold value [33, 34]. This finding could be explained
in terms of the manifestation of the mechanical response
from the underlying PI phase, called thinning-induced
mechanical instability [33]. We further examined this issue
using a film of poly[(2-methoxyethyl vinyl ether)-block-(L-
lactic acid)] (P(MOVE-b-LLA)), in which the surface was
covered with PMOVE [35], and found that fibroblasts were
sufficiently sensitive to identify crystalline/non-crystalline
regions of PLLA existing underneath the surface PMOVE
layer. These results suggest that typical stiff polymers,
unlike ECM, can be used as functional cellular scaffolds
based on their surface mechanical properties. In this study,
we propose a novel scaffold for the realization of patterned
cellular behavior on a flat surface on the basis of the
mechanical instability of synthetic glassy polymers. This
novel methodology for cell patterning enables the potential
development of further-functionalized arrays of living cells,
which are applicable to cell-based sensors and drug dis-
covery devices in the biomedical field [36, 37].

Experimental

Scaffold preparation

PS with a number-average molecular weight (Mn) of 235k
and a molecular weight distribution (Mw/Mn) of 1.05, where
Mw is the weight-average molecular weight, was purchased
from Polymer Source Inc. (Dorval, QC, Canada). Figure 1
shows the preparation process for a cellular scaffold with
2D-patterned mechanical properties. A spin-coated PS film
on a silicon wafer was removed from the wafer and then
floated to the surface of ultrapure water purified by a Milli-
Q system (Merck KGaA, Darmstadt, Germany) [38]. The
thickness of the PS film (dPS) was adjusted from 100 nm to
1 μm. Then, the film was transferred onto an epoxy resin-
based line and space (L&S) pattern substrate prepared by
photolithography (Tokyo Ohka Kogyo Co. Ltd., Kanagawa,
Japan). The height difference and half pitch of the L&S
pattern were 2.4 and 40 μm, respectively. The PS/L&S
scaffold was dried at a room temperature of approximately
298 K for 24 h under vacuum. The morphology of the L&S
patterned substrate before and after the transfer of the PS

film was examined by using a LEXT OLS4000 3D laser
measuring microscope (Olympus Co., Tokyo, Japan). In
addition, sectional views of the scaffold were observed by
scanning electron microscopy (SEM, SS-550, Shimadzu
Co., Kyoto, Japan).

Cell culturing

Suspensions of mouse fibroblast L929 cells (Cell Engi-
neering Division, RIKEN BioResource Center, Tsukuba,
Japan) at 5.0 × 104 cells/well were seeded onto the PS/L&S
scaffolds placed on the base of 24-well culture dishes filled
with cell culture medium, normal Roswell Park Memorial
Institute (RPMI) 1640 medium (Life Technologies Japan
Ltd., Tokyo, Japan), with/without 10% fetal bovine serum
(FBS, Life Technologies Japan). The cultures were main-
tained at 310 K (37 °C) in a humidified atmosphere con-
taining 5% CO2. After 4 h of culturing, the scaffold surfaces
were rinsed to remove cells floating in the culture medium.
The number and morphology of cells on the PS/L&S
scaffolds at a given culturing time were evaluated by phase
contrast microscopy (BZ-8100, Keyence Co., Osaka,
Japan). Additionally, cell proliferation under serum condi-
tions was observed as a function of the culturing time in the
same manner. The projected area of cells was quantified by
using ImageJ software (National Institutes of Health, USA).

Results and discussion

Scaffold morphology

Figure 2a, b shows 3D-confocal laser scanning microscopic
(CLSM) images of the L&S patterned substrate before and
after picking up a 100 nm-thick PS film. Although the film
was very thin, the top surface was quite flat without any
defects, as shown in Fig. 2b. Figure 2c, d shows sectional
views of the L&S patterned substrate before and after the
transfer of the 100 nm-thick PS film observed by SEM. As
mentioned above, the manifestation of thinning-induced
mechanical instability for thin polymer films is strongly
dependent on the underlying region [32]. Considering that
the underlying region of the PS film is composed of either
the epoxy resin with an elastic modulus of 3.0 GPa or air,
hereafter referred to as the L- or S-regions, respectively, it
can be posited that this scaffold possesses 2D-patterned
mechanical properties.

Cell adhesion under serum-free conditions

First, cell culturing on the PS/L&S scaffold was performed
under serum-free conditions, that is, the integrin-
independent interaction between the cells and polymerFig. 1 A schematic illustration of the preparation of a PS/L&S scaffold
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scaffolds was examined [39–41]. Figure 3a, b shows the
phase-contrast images of L929 cells cultured on the PS/L&S
scaffolds with different dPS values for 4 h. Although the
dividing lines between the L- and S-regions can be dis-
cerned in the images, the scaffold geometry is also shown
for easy understanding. While the cell adhesion on the 1
μm-thick PS scaffold was homogeneous over the 2D
mechanical pattern, as shown in Fig. 3b, more cells were
attached to the L-regions than to the S-regions of the 100
nm-thick PS scaffold, as shown in Fig. 3a. Figure 3c shows
the dPS dependence of the number of cells adhered on the L-
and S-regions (NL and NS), and the ratio of the mean NL to

mean NS values is shown in Fig. 3d. When the PS film was
thicker than 800 nm, the ratio was independent of the
underlying L&S pattern. On the other hand, when the dPS
fell short of 400 nm, NL was greater than NS, and their
difference showed a tendency to increase with decreasing
dPS. These points make it clear that L929 cells can recognize
the 2D mechanical pattern of the scaffolds.

Figure 4a, b shows the projected area of cells attached to
the PS/L&S scaffolds with dPS values of 100 nm and 1 μm,
respectively. The peak position and full width at half
maximum (FWHM) obtained from the normal distribution
curves are summarized in Table 1. While the cell spreading

Fig. 2 a, b 3D-CLSM images of
the L&S patterned substrate
a before and b after the transfer
of a 100 nm-thick PS film. The
half pitch of the L&S patterned
substrate was 40 μm, and the
widths of the L- and S-regions
were the same. The height
difference between the L- and
S-regions was 2.4 μm. c, d
Sectional views of the L&S
patterned substrate from SEM
c before and d after the transfer
of the thin PS film

Fig. 3 Phase-contrast images of
L929 fibroblasts attached to the
PS/L&S scaffolds with dPS
values of a 100 nm and b 1 μm,
respectively, under serum-free
conditions. Scale bars
correspond to 50 μm. Schematic
illustrations of the scaffolds
accompany the images. c The
number of cells adhered on the
L- and S-regions (NL and NS).
Data are the mean values with
standard deviations. *p < 0.05
(Student’s t-test). d The dPS
dependence of the ratio of mean
NL to mean NS values (NL/NS)
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was not dependent on the underlying L&S pattern for the
thicker PS scaffolds, cells attached onto the L-regions of
the thinner scaffolds spread well in comparison with those
attached to the S-regions. Thus, these results demonstrate
again that the cell adhesion and spreading at the initial
stage under serum-free conditions was somehow controlled
by the L&S pattern if the upper PS film was sufficiently
thin.

Cell adhesion and proliferation under serum
conditions

Second, cellular behaviors were monitored for a longer time
under serum conditions to examine the impact of surface
mechanical properties on cell proliferation as well as
adhesion [11]. Figure 5 shows the phase-contrast images of
L929 fibroblasts cultured on the PS/L&S scaffolds with
different dPS values for (a, b) 4 h and (c, d) 72 h. In the case
of the 4 h cell culture, while the cell adhesion was not
dependent on the 2D mechanical pattern for the 1 μm-thick

PS scaffold, it was slightly dependent for the 100 nm-thick
PS one. This trend became clear after 72 h, as shown in Fig.
5c, d. Figure 5e, f shows the number of cells adhered to the
L- and S-regions after 4 h and 72 h of culture, respectively.
Figure 5g shows the culturing time dependence of NL/NS. In
the case of 4 h, the NL/NS ratio was almost unity for the
scaffolds with a PS layer thicker than 800 nm and was
slightly higher for the scaffolds with a thinner PS layer. This
cell adhesion behavior at the initial stage was similar to that
observed under serum-free conditions. When the culturing
time increased to a few days for the scaffolds with a PS
layer thicker than 800 nm, both NL and NS increased to the
same amount, that is, L929 cells uniformly attached to and
proliferated on the scaffold surface. Conversely, when the
upper PS layer became thinner than 400 nm, NL was clearly
greater than NS, and this difference became more remark-
able as the culturing time increased. These points make it
clear that fibroblast proliferation and migration as well as
adhesion could be regulated by the 2D mechanical pattern
of the scaffold.

It has been reported that integrin-mediated cell adhesion
causes conformational changes in mechanosensitive pro-
teins owing to the induced tension, which are involved in
changing the connections between the ECM and actin
cytoskeleton, so-called actin remodeling [42–45]. As a
consequence, the signal transduction pathway is activated to
alter cellular behaviors such as proliferation and migration.
Taking this into account, a possible explanation for the
cellular behaviors observed here is that the difference in the
mechanical response between the S- and L-regions of the

Fig. 4 The abundance of the
projected area of cells adhered
on the L- and S-regions for
scaffolds with dPS values of a
100 nm and b 1 μm. Normal
distribution curves are
superimposed for reference

Table 1 Peak position and full width at half maximum (FWHM) with
the standard deviation for the normal distribution curves in Fig. 4

dPS (nm) Region Peak position (μm2) FWHM (μm2)

100 L 398 ± 10 286 ± 23

100 S 315 ± 11 240 ± 25

1000 L 363 ± 12 271 ± 27

1000 S 387 ± 14 339 ± 33
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scaffold could lead to a different level of activation for actin
remodeling on these regions. Another possible explanation
is the gentle oscillation of the PS thin film on the S-region,

which is always in contact with the culture medium. This
oscillation does not occur on the L-region due to the
foundation of the epoxy resin. Such a situation may also

Fig. 5 Phase contrast images of
L929 fibroblasts attached to the
PS/L&S scaffolds with dPS
values of a, c 100 nm and b, d 1
μm cultured for a, b 4 h and c, d
72 h, respectively, in medium
containing 10% FBS. Scale bars
correspond to 50 μm.
e, f The dPS dependence of the
number (N) of cells adhered on
the L- and S-regions (NS and NL)
for a culturing time of e 4 h and
f 72 h, respectively. Data are the
mean values with standard
deviations. *p < 0.05;
**p < 0.005 (Student’s t-test).
g Culturing time dependence of
NL/NS
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contribute to the different level of activation for actin
remodeling. A more conclusive study of this issue with
finite element analysis is currently underway.

Conclusions

A novel concept for cellular scaffolds with 2D-patterned
mechanical properties is proposed. Initial cell adhesion
and spreading under serum-free conditions on the PS/L&S
scaffold were suppressed on the S-regions compared to
those on the L-regions once the upper PS film became
thinner than a threshold value. In addition, under serum
conditions, cell adhesion and proliferation were affected
by the underlying L&S pattern with a thinner PS layer.
Cellular behaviors on scaffolds composed of a common
glassy polymer can be regulated on the basis of the phy-
sical properties of the scaffold, especially near the out-
ermost region. We believe that this novel concept of
cellular scaffolds will lead to the development of highly
functional cellular scaffolds composed of synthetic
polymers.
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