Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Logic gate aggregation of poly(N-isopropylacrylamide) nanogels with catechol substituents that respond to body heat

Abstract

Smart hydrogel materials are a popular topic of investigation because they have the potential to be used as smart drug carriers and soft actuators. Hydrogel materials showing responsiveness to logic gate-type stimuli are of special interest because their responsiveness can be regulated more accurately than that of common stimuli-responsive materials. In this study, poly(N-isopropylacrylamide) nanogels containing catechol substituents in their polymer network structure were prepared via precipitation polymerization. The prepared nanogels showed AND-type logic gate thermal aggregation behavior. The possible use of this logic gate-type smart nanogel aggregating system was investigated in a smart valve system.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Vinogradov SV, Bronich TK, Kabanov AV. Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv Drug Deliv Rev. 2002;54:135–47.

    Article  CAS  PubMed  Google Scholar 

  2. Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K. The development of microgels/nanogels for drug delivery applications. Prog Polym Sci. 2008;33:448–77.

    Article  CAS  Google Scholar 

  3. Kabanov AV, Vinogradov SV. Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angew Chem Int Ed. 2009;48:5418–29.

    Article  CAS  Google Scholar 

  4. Sasaki Y, Akiyoshi K. Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications. Chem Rec. 2010;10:366–76.

    CAS  PubMed  Google Scholar 

  5. Xia L-W, Xie R, Ju X-J, Wang W, Chen Q, Chu L-Y. Nano-structured smart hydrogels with rapid response and high elasticity. Nat Commun. 2013;4:2226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ryu J-H, Chacko RT, Jiwpanich S, Bickerton S, Babu RP, Thayumanavan S. Self-cross-linked polymer nanogels: a versatile nanoscopic drug delivery platform. J Am Chem Soc. 2010;132:17227–35.

    Article  CAS  PubMed  Google Scholar 

  7. Gota C, Okabe K, Funatsu T, Harada Y, Uchiyama S. Hydrophilic fluorescent nanogel thermometer for intracellular thermometry. J Am Chem Soc. 2009;131:2766–7.

    Article  CAS  PubMed  Google Scholar 

  8. Lu A, Moatsou D, Longbottomb DA, O’Reilly RK. Tuning the catalytic activity of L-proline functionalized hydrophobic nanogel particles in water. Chem Sci. 2013;4:965–9.

    Article  CAS  Google Scholar 

  9. Hu L, Sarker AK, Islam MR, Li X, Lu Z, Serpe MJ. Poly (N-isopropylacrylamide)microgel-based assemblies. J Polym Sci Part A. 2013;51:3004–20.

    Article  CAS  Google Scholar 

  10. Hashimoto Y, Mukai S, Sawada S, Sasaki Y, Akiyoshi K. Advanced artificial extracellular matrices using amphiphilic nanogel-cross-linked thin films to anchor adhesion proteins and cytokines. ACS Biomater Sci Eng. 2016;2:375–84.

    Article  CAS  Google Scholar 

  11. Duracher D, Elaissari A, Pichot C. Preparation of poly(N-isopropylmethacrylamide) latexes kinetic studies and characterization. J Polym Sci A. 1999;37:1823–37.

    Article  CAS  Google Scholar 

  12. Zhao Y, Zheng C, Wang Q, Fang J, Zhou G, Zhao H, Yang Y, Xu H, Feng G, Yang X. Permanent and peripheral embolization: temperature-sensitive p(N-isopropylacrylamide-co-butyl methylacrylate) nanogel as a novel blood-vessel-embolic material in the interventional therapy of liver tumors. Adv Funct Mater. 2011;21:2035–42.

    Article  CAS  Google Scholar 

  13. Mevissen TET, Kulathu Y, Mulder MPC, Geurink PP, Maslen SL, Gersch M, Elliott PR, Burke JE, van Tol BDM, Akutsu M, Oualid FE, Kawasaki M, Freund SMV, Ovaa H, Komander D. Molecular basis of lys11-polyubiquitin specificity in the deubiquitinase cezanne. Nature. 2016;538:402–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cao E, Liao M, Cheng Y, Julius D. TRPV1 structures in distinct conformations reveal activation mechanisms. Nature. 2013;504:113–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhou A, Carrell RW, Murphy MP, Wei Z, Yan Y, Stanley PLD, Stein PE, Pipkin FB, Read RJ. A redox switch in angiotensinogen modulates angiotensin release. Nature. 2010;468:108–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang L, Lian W, Yao H, Liu H. Multiple-stimuli responsive bioelectrocatalysis based on reduced graphene oxide/poly(N-isopropylacrylamide) composite films and its application in the fabrication of logic gates. ACS Appl Mater Interfaces. 2015;7:5168–76.

    Article  CAS  PubMed  Google Scholar 

  17. Liu G-F, Ji W, Feng C-L. Installing logic gates to multiresponsive supramolecular hydrogel co-assembled from phenylalanine amphiphile and bis(pyridinyl) derivative. Langmuir. 2015;31:7122–8.

    Article  CAS  PubMed  Google Scholar 

  18. Xue P, Lu R, Jia J, Takafuji M, Ihara H. A smart gelator as a chemosensor: application to integrated logic gates in solution, gel, and film. Chem Eur J. 2012;18:3549–58.

    Article  CAS  PubMed  Google Scholar 

  19. Ikeda M, Tanida T, Yoshii T, Kurotani K, Onogi S, Urayama K, Hamachi I. Installing logic-gate responses to a variety of biological substances in supramolecular hydrogel–enzyme hybrids. Nat Chem. 2014;6:511–8.

    Article  CAS  PubMed  Google Scholar 

  20. Ma Y, Yung L-YL. Detection of dissolved CO2 based on the aggregation of gold nanoparticles. Anal Chem. 2014;86:2429–35.

    Article  CAS  PubMed  Google Scholar 

  21. Sparks BJ, Hoff ET, Hayes LTP, Patton DL. Mussel-Inspired thiol–ene polymer networks: influencing network properties and adhesion with catechol functionality. Chem Mater. 2012;24:3633–42.

    Article  CAS  Google Scholar 

  22. Kim HJ, Hwang BH, Lim S, Choi B-H, Kang SH, Cha HJ. Mussel adhesion-employed water-immiscible fluid bioadhesive for urinary fistula sealing. Biomaterials. 2015;72:104–11.

    Article  CAS  PubMed  Google Scholar 

  23. Maier GP, Rapp MV, Waite JH, Israelaachvili JN, Butler A. Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement. Science. 2015;349:628–32.

    Article  CAS  PubMed  Google Scholar 

  24. Nishida J, Kobayashi M, Takahara A. Light-triggered adhesion of water-soluble polymers with a caged catechol group. ACS Macro Lett. 2013;2:112–5.

    Article  CAS  Google Scholar 

  25. Kim BJ, Oh DX, Kim S, Seo JH, Hwang DS, Masic A, Han DK, Cha HJ. Mussel-mimetic protein-based adhesive hydrogel. Biomacromolecules. 2014;15:1579–85.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS Kakenhi (Grant Number: 17K14537) from the MEXT in Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shingo Tamesue or Takeshi Yamauchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tamesue, S., Abe, S., Endo, T. et al. Logic gate aggregation of poly(N-isopropylacrylamide) nanogels with catechol substituents that respond to body heat. Polym J 50, 503–510 (2018). https://doi.org/10.1038/s41428-018-0042-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-018-0042-x

Search

Quick links