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Abstract
Direct arylation polymerization (DArP), which is a cross-coupling polymerization between a dihaloarene monomer and a
non-substituted arene monomer, has attracted widespread attention for conjugated polymer synthesis. In DArP, no prior
preparation of arene monomers with organometallic functionalities is necessary, in contrast to typical cross-coupling
polymerizations such as the Suzuki and Stille reactions. Furthermore, the low toxicity of the byproducts of DArP contributes
to green chemistry. In terms of efficiency and environmental friendliness, these advantages make DArP an attractive next-
generation polymer synthetic method. To date, numerous conjugated polymers have been synthesized by DArP. However,
many problems remain to be overcome, including better understanding of the correlation between polymer structure and
DArP factors, the design of a more efficient DArP system, and so on. Addressing these problems could lead to the
establishment of DArP as a viable alternative for conjugated polymer synthesis. We revealed that a variety of conjugated
polymers such as donor–acceptor alternating copolymers (arylene diimide-based donor–acceptor alternating copolymers and
thienoisoindigo-based donor-acceptor alternating copolymers) and regioregular poly(3-alkylselenophene)s were successfully
synthesized by the DArP strategy based on appropriate molecular design and adjustment of the catalytic system. This focus
review will describe our recent studies developing the synthesis of novel conjugated polymers via DArP.

Introduction

Conjugated polymers are important materials for next-
generation electronics, such as organic field-effect transis-
tors (OFETs), organic photovoltaics (OPVs), non-volatile
organic memory, and so on [1–4]. In general, conjugated
polymers are synthesized by cross-coupling polymerization
between a dihaloarene monomer and an organometallic
arene monomer, such as Suzuki and Stille cross-coupling
polymerizations (Fig. 1) [5–7]. Cross-coupling poly-
merization has clearly played an essential role in the
development of conjugated polymers. However, these
techniques have drawbacks, such as the requirement for the
prior preparation of monomers with organometallic func-
tionalities, the toxicity of the byproducts, the low atom
economy, and so on. A new methodology for the synthesis
of conjugated polymers that can overcome such drawbacks
is greatly needed in terms of green chemistry.

Direct arylation polymerization (DArP), cross-coupling
polymerization between a dihaloarene monomer and a non-
substituted arene monomer, is of current interest as a pro-
mising alternative methodology [8–12]. The synthetic
advantage of DArP is that no preparation of monomers with
organometallic functionality is required, which contributes
to higher atom economy. Furthermore, the lower toxicity of
the byproducts makes DArP more environment-friendly
than conventional cross-coupling polymerizations. Since
the first report of DArP, in which poly(3-alkylthiophene)s
were synthesized from 2-iodo-3-alkylthiophenes [13], a
variety of conjugated polymers have been synthesized by
DArP [14–24]. Nevertheless, there are still many con-
jugated polymers that cannot be synthesized by DArP. This
fact implies that DArP may currently be less universally
applicable than conventional cross-coupling polymeriza-
tions, and more research is essential to expand its potential.
This focus review describes our recent studies on the
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development of novel conjugated polymer synthesis by
DArP, which emphasizes the potential of DArP as an
alternative methodology for the synthesis of conjugated
polymers.

Mechanism of direct arylation

Figure 2 shows the catalytic cycle of direct arylation under
carboxylate-mediated conditions, which is commonly used
for the direct arylation synthesis of conjugated polymers
[25]. In this cycle, the oxidative addition of palladium to a
haloarene monomer occurs as well as conventional cross-
coupling reactions. With assistance from the carboxylate
ligand, the unsubstituted monomer is deprotonated simul-
taneously with the formation of the metal–carbon bond.
Reductive elimination then occurs to afford the final pro-
duct. The combination of reagents (i.e., palladium catalyst,
phosphine ligand, acid, base, and solvent) dominates the
progress of the reaction, and exploring suitable

combinations of these reagents is a fundamental approach
for DArP [26–28].

Donor–acceptor (D–A) alternating
copolymers from AA+ BB system

D–A alternating copolymers (i.e., low-band-gap polymers)
are a promising material for many device applications
because the tuning of the polymer characteristics, such as
optical properties, HOMO/LUMO levels, thermal proper-
ties, and crystallinity, can be accomplished by the combi-
nation of donor and acceptor structures [29–31]. Alternating
copolymerization of the bifunctional donor and acceptor
monomers (AA+BB system) enables the systematic
synthesis of a series of low-band-gap polymers. To date,
various low-band-gap polymers have been synthesized by
DArP in an AA+ BB system (Fig. 3) [16, 17, 20, 22–24].

The arylene diimide (naphthalene diimide, perylene dii-
mide, and so on) structure is a potential acceptor component
because of its high electron affinity, high electron mobility,
and high stability [32]. In particular, naphthalene diimide
(NDI)-based low-band-gap polymers have been widely
investigated as n-type semiconducting materials for OFETs
[33–35]. In addition to OFET applications, the potential of
NDI-based low-band-gap polymers as acceptor materials is
also demonstrated by their use in non-fullerene solar cells
(i.e., all-polymer solar cells) [36, 37]. This utility indicates
that NDI-based low-band-gap polymers are high-
performance acceptor polymers. Accordingly, there has
been great scientific interest in and high demand for the
synthesis of such high-performance acceptor polymers via
DArP; however, the synthesis of arylene diimide-based low-
band-gap polymers via DArP had never been accomplished.

The direct arylation synthesis of NDI-based low-band-
gap polymers was firstly reported in 2012 by Horie et al.
[38]. This direct arylation was carried out between a con-
ventional dibromo NDI monomer (N,N′-di-n-hexadecyl-2,6-
dibromonaphthalene-1,4,5,8-tetracarboxylic acid diimide)
and 4,4′-bis(2-ethylhexyl)dithieno[3,2-b:2′,3′-d]silole in the
presence of Pd(OAc)2, which is commonly used as a
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palladium catalyst in DArP. This reaction gave the
corresponding polymer with a very low molecular weight
(Mn= 2200). Due to the low reactivity of the dibromo
NDI monomer, this DArP was deemed unsuccessful. Based
on this result, we focused on the design of a new dibromo
NDI monomer with enhanced reactivity in DArP. As
explained earlier, the catalytic cycle of DArP passes through
a transition state in which palladium coordinates with
the carbonyl group of the carboxylate ligand. In the case
of DArP using a conventional dibromo NDI monomer
(e.g., N,N′-di-n-hexadecyl-2,6-dibromonaphthalene-1,4,5,8-
tetracarboxylic acid diimide), the carbonyl group of the

dibromo NDI monomer can coordinate to palladium in
addition to the carboxylate ligand (Fig. 4). A very stable
bidentate coordination would prevent the C–H bond clea-
vage. The formation of bidentate coordination is considered
to be one of the reasons that DArP using a conventional
dibromo NDI monomer did not proceed well. Accordingly,
the design of a new dibromo NDI monomer that does not
form the aforementioned bidentate coordination could be
the key to the successful direct arylation synthesis of NDI-
based low-band-gap polymers. Therefore, we synthesized a
new dibromo NDI monomer, bromothiophene-end-capped
NDI monomer (NDI2T-Br2) [39], and investigated DArP
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between NDI2T-Br2 and 3,4-dimethylthiophene under
typical Pd(OAc)2-based direct arylation conditions (Fig. 4a)
[40, 41]. As shown in Table 1, the progress of DArP using
NDI2T-Br2 was significantly improved compared to the
previous report, and the NDI-terthiophene alternating low-
band-gap polymer PNDI3T with Mn= 31,000 was suc-
cessfully obtained by using PtBu3·HBF4 as a result of
screening phosphine ligands [41]. For comparison, DArP
between N,N′-bis(2-decyl-1-tetradecyl)-2,6-dibromo-
naphthalene-1,4,5,8-tetracarboxylic acid diimide and 3,4-
dimethylthiophene was conducted under the same condi-
tions; however, in this case, the polymer was not obtained.
The optical, electrochemical, and thermal properties of the
resulting PNDI3T were consistent with those of the corre-
sponding polymer synthesized by Stille cross-coupling
polymerization. To the best of our knowledge, DArP
using NDI2T-Br2 is the first example of the direct arylation
synthesis of an NDI-based low-band-gap polymer with high
molecular weight. Furthermore, the correlation between
these results as a function of the phosphine ligand provided
additional insight (Fig. 4b). The reactivity of the catalyst
strongly depends on the cone angle and basicity of the
ligand in the cross-coupling reaction [42]. In general, a large
cone angle and strong basicity promote reductive elimina-
tion and oxidative addition, respectively. In DArP using
NDI2T-Br2, the basicity tended to dominate the progress of
the DArP rather than the cone angle. This fact indicates that
the promotion of the oxidative addition process by a ligand
with strong basicity (strong electron-donation) is highly
important for DArP using NDI2T-Br2. Following our first
report on DArP using NDI2T-Br2, other research groups
have developed NDI-based low-band-gap polymers by this
approach, thus showing its general versatility [43–45]. It
should be noted, however, that Sommer et al. developed the
direct arylation synthesis of NDI-based low-band-gap
polymers from a conventional dibromo NDI monomer
while exploring the Pd2dba3-based catalytic system [46].

In addition, perylene diimide (PDI)-based low-band-gap
polymers were successfully synthesized by using a
bromothiophene-end-capped PDI monomer (PDI2T-Br2)
[47]. The results of condition screening showed that the
tendency of suitable phosphine ligands for DArP with the
PDI monomer was similar to that with the NDI monomer; a
PDI-terthiophene alternating low-band-gap polymer
PPDI3T with Mn= 13,600 was obtained in the presence of
PCy3·HBF4 with strong basicity (Fig. 5a). Furthermore,
random copolymerization of NDI2T-Br2, PDI2T-Br2, and
3,4-dimethylthiophene successfully afforded the random
copolymer with NDI and PDI components, P(NDI3T-
PDI3T), and the component ratio (m/n) could be tuned by
adjusting the feed ratios of NDI2T-Br2 and PDI2T-Br2
(Fig. 5b). The light harvesting property was tuned in the
range of 400–800 nm by adjusting the m/n component ratio.

D–A alternating copolymers from AB system

The synthesis of low-band-gap polymers by using an AA+
BB system is a good method in terms of systematic sample
preparation. On the other hand, a common problem in the
AA+ BB system is that undesirable side reactions due to
homo-couplings might occur [48, 49]. It is possible to
minimize such structural defects by optimizing the reaction
conditions in the AA+ BB system [50, 51]. However,
DArP using an asymmetric AB-type monomer (i.e., self-
condensation-type DArP) could be a more effective way to
fundamentally avoid this drawback. Furthermore, strict
stoichiometric control can also be avoided in the AB sys-
tem. Therefore, self-condensation-type DArP is more
attractive than DArP in the AA+BB system from a prac-
tical point of view. However, the synthesis of low-band-gap
polymers via self-condensation-type DArP is far less
developed than that via DArP in the AA+ BB system.
Therefore, we investigated the synthesis of low-band-gap
polymers via self-condensation-type DArP. Our designed
NDI monomer end-capped with thiophene was considered a
monomer with the D–A architecture. The self-condensation-
type DArP using an asymmetric NDI-based D–A monomer
NDI2T-Br was investigated (Fig. 6a) [52]. The combination
of reagents (palladium catalyst, phosphine ligand, base, and
solvent) for polymerization was optimized based on the
direct arylation synthesis of NDI-based low-band-gap
polymers described earlier. As a result, the NDI-
dithiophene alternating low-band-gap polymer PNDI2T
with the highest Mn (Mn= 13,000) was obtained in high
yield under the Pd(OAc)2/PCy3·HBF4/K2CO3/PivOH/
DMAc condition.

The thienoisoindigo (TIG) structure has been investi-
gated intensively as a new class of acceptor components for
low-band-gap materials [53]. The high molecular ordering,

Table 1 Direct arylation synthesis of PNDI3Ta

Entry Phosphine ligand Mn
b Mw/Mn

b Yield (%)c

1 PCy3·HBF4 25,000 2.49 70

2 PtBu2Me·HBF4 29,000 2.04 61

3 PtBu3·HBF4 31,000 2.86 69

4 P(o-tol)3 3000 1.05 74

5 P(o-PhOMe)3 14,000 1.65 53

6 PPh3 10,400 1.80 19

7 None 17000 2.67 21

a The detailed polymerization procedure is described in refs. [40] and
[41]
b Determined by SEC by using polystyrene standards in chloroform
c Yields of chloroform-soluble fractions
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expanded π-conjugation, and efficient charge transport due
to the high coplanarity via S…O interactions, and the high
charge delocalization via the quinoidal structure of the
backbone are characteristics of the TIG structure. By uti-
lizing these advantages, an OFET with a TIG-based low-
band-gap polymer achieved ultrahigh hole mobility above
14 cm2/V·s [54]. showing the high potential of TIG-based
low-band-gap polymers for opto-electrical applications. We
herein investigated the direct arylation synthesis of new
TIG-based low-band-gap polymers from an asymmetric
TIG-based D-A monomer TIG2T-Br [55]. By optimizing
the reaction conditions, a TIG-dithiophene alternating low-
band-gap polymer PTIG2T with Mn= 8300 was obtained in

the presence of Pd2dba3/P
tBu2Me·HBF4/K2CO3/PivOH in

toluene (Fig. 6b). The direct arylation synthesis of TIG-
based low-band-gap polymers by the AA+BB system was
reported by Wang et al. and Mei et al.; however, the
polydispersities of the obtained polymers were relatively
high in some cases, implying some undesirable side reac-
tions [56, 57]. Furthermore, we investigated the photo-
voltaic property of a PTIG2T:PC61BM active layer in a
conventional device configuration of ITO/PEDOT:PSS/
PTIG2T:PC61BM/Ca/Al. A power conversion efficiency
(PCE) of 3.19% was achieved with a Voc of 0.52 V, Jsc of
10.58 mA/cm2, and FF of 0.58. TIG-based low-band-gap
materials synthesized by conventional cross-coupling
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reactions have been used in OPVs as donor materials; most
of those OPVs exhibited PCE values of 1–3% [58–60]. The
PCE of 3.19% from PTIG2T was one of the highest PCEs
achieved by OPVs with TIG-based low-band-gap materials.

Furthermore, this fabricated OPV is the first example that
used a TIG-based low-band-gap material synthesized via
DArP. These results demonstrate that a TIG-based low-
band-gap polymer obtained by DArP can be utilized for
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OPV applications as effectively as those synthesized via
conventional cross-coupling reactions.

Regioregular polyselenophenes from AB
system

We are currently interested in polyselenophenes. Poly-
selenophenes have comparable HOMO levels to those of
polythiophenes, while the LUMO levels of poly-
selenophenes are lower than those of polythiophenes [61–
63]. Therefore, it is expected that polyselenophenes have
the reduced optical band gaps, enhanced photostability, and
improvement of electron transportation compared to poly-
thiophenes. Considering these advantages, poly-
selenophenes have the potential to be more promising
materials for organic electronics than polythiophenes.
Nevertheless, studies of polyselenophenes, covering the
synthesis, characterization, morphological analysis, and
device applications, are far less developed than the research
on polythiophenes. As for the synthesis of poly(3-alkylse-
lenophene) which is one of basic polyselenophenes, oxi-
dative polymerization [64], and Grignard-metathesis
(GRIM) polymerization [62] have been reported. Unfortu-
nately, the feature of the polymer structure, such as mole-
cular weight, polydispersity, reaction sites, and so on, could
not be controlled by oxidative polymerization. GRIM
polymerization requires completely anhydrous reaction
conditions to obtain regioregular poly(3-alkylselenophene)s
with high molecular weight (Mn > 10,000) and narrow
polydispersity (Mw/Mn < 1.2). Accordingly, there is a great
need to develop more facile and efficient methods to syn-
thesize polyselenophenes. We successfully synthesized
regioregular poly(3-hexylselenophene) rr-P3HS (regior-
egularity: rr= 92–96%) under the simple phosphine-free
DArP condition by using PdCl2 as a catalyst (Fig. 7a) [65].
The effectiveness of PdCl2 under the phosphine-free con-
dition can be explained by the previously reported chloride-
promoted direct arylation mechanism; chloride ion acted as
a ligand, resulting in an efficient concerted metalation-
deprotonation catalytic cycle [66]. Cheng et al. recently
reported the synthesis of rr-P3HS via DArP under Pd(OAc)

2-based conditions; however, both the molecular weight and
the regioregularity were lower than those we obtained [67].
This fact supports the advantage of PdCl2 for the phosphine-
free direct arylation synthesis of rr-P3HS. The assembly of
nanofibers was observed by atomic force microscopy, and
the assembly behavior (e.g., forming non-woven fibrous
and bundle-like spherulitic self-assembled nanostructures)
depended on the molecular weight of rr-P3HS (Fig. 7b).
Furthermore, according to X-ray diffraction analysis, the
formation of fibrous nanostructures was attributed to the

pure crystalline structure with significant interdigitation of
the hexyl side chains (Fig. 7c).

Conclusions

DArP is a promising candidate for an alternative method of
synthesizing conjugated polymers in terms of efficiency and
environmental friendliness. We developed a direct arylation
methodology using acceptor monomers end-capped with
electron-rich units (e.g., D–A monomers for AA+ BB and
AB system, respectively). By using these newly designed
monomers under optimized direct arylation conditions, a
variety of low-band-gap polymers, including NDI, PDI, and
TIG-based low-band-gap polymers, were successfully syn-
thesized. Furthermore, the direct arylation synthesis of rr-
P3HS (rr= 92–96%) was achieved under PdCl2-based
phosphine-free conditions. Our results demonstrate that
DArP yields various desirable conjugated polymers with
appropriate molecular design and adjustment of the catalytic
system. There is still much room to pursue fundamental
research with regard to DArP. Therefore, it is expected that
further development by energetic investigation will lead to
greater utility of DArP as an alternative conjugated polymer
synthesis methodology.
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