Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Light-driven molecular switching of atropisomeric polymers containing azo-binaphthyl groups in their side chains

Abstract

Light-driven atropisomeric polymers containing azo and binaphthyl units with a conjugated structure were designed and synthesized. The polymers exhibit a glass transition temperature higher than 75 °C with thermal stability above 280 °C and form uniform and smooth thin films without grain boundaries. The trans-cis isomerization is efficiently reversible upon alternating photoirradiation with UV and visible light or with heat. The photoisomerization of the chiral polymer results in photomodulation of the ellipticity and optical rotation (\([\alpha ]_{\mathrm{D}}^{25}\)), owing to a chiroptical switching behavior. The maximum changes in the dihedral angle and \([\alpha ]_{\mathrm{D}}^{25}\) are 21% and 700°, respectively, from the initial state owing to a photoinduced molecular twisting motion of the binaphthyl moiety. The polymer also displays photoswitchable fluorescence with a maximum at 409 nm. A photoinduced change in the refractive index of the formed film is also observed after irradiation with linearly polarized light at 532 nm according to the anisotropic molecular orientation. These results suggest that atropisomeric polymers are potential candidates for light-driven chiroptical switches.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Feringa B, Delden R, Wiel M. Chapter 5: Handbook of molecular switches. In: Feringa B, editor. Weinheim, Germany: Wiley-VCH, Verlag GmbH; 2001. pp. 123–63.

  2. 2.

    Koumura N, Zijlstra R, Delden R, Harada N, Feringa B. Light-driven monodirectional molecular rotor. Nature. 1999;401:152–5.

    Article  CAS  Google Scholar 

  3. 3.

    Feringa B. In control of motion: from molecular switches to molecular motors. Acc Chem Res. 2001;34:504–13.

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Browne W, Feringa B. Making molecular machines work. Nat Nanotechnol. 2006;1:25–35.

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Bandara D, Burdette S. Photoisomerization in different classes of azobenzene. Chem Soc Rev. 2012;41:1809–25.

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Yu Y, Ikeda T. Alignment modulation of azobenzene-containing liquid crystal systems by photochemical reactions. J Photochem Photobiol C. 2004;5:247–65.

    Article  CAS  Google Scholar 

  7. 7.

    Ikeda T. Photomodulation of liquid crystal orientations for photonic applications. J Mater Chem. 2003;13:2037–57.

    Article  CAS  Google Scholar 

  8. 8.

    Pu L. Chapter 1: Handbook of 1,1′-Binaphthyl-Based chiral materials. In: Pu L, editor. London, UK: Imperial College Press; 2009. pp. 1–10.

  9. 9.

    Shockravi A, Javadi A, Abouzari-Lotf E. Binaphthyl-based macromolecules: a review. RSC Adv. 2013;3:6717–46.

    Article  CAS  Google Scholar 

  10. 10.

    Montbach E, Venkataraman N, Doane J, Khan A, Magyar G, Shiyanovskaya I, Schneider T, Green L, Li Q. Novel optically addressable photochiral displays. Dig Tech Pap Soc Inf Disp Int Symp. 2008;39:919–22.

    Article  CAS  Google Scholar 

  11. 11.

    Wang L, Dong H, Li Y, Xue C, Sun L, Yan C, Li Q. Reversible near-infrared light directed reflection in a self-organized helical superstructure loaded with upconversion nanoparticles. J Am Chem Soc. 2014;136:4480–3.

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Delden R, Mecca T, Rosini C, Feringa B. A chiroptical molecular switch with distinct chiral and photochromic entities and its application in optical switching of a cholesteric liquid crystal. Chem Eur J. 2004;10:61–70.

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Wang Y, Urbas A, Li Q. Reversible visible-light tuning of self-organized helical superstructures enabled by unprecedented light-driven axially chiral molecular switches. J Am Chem Soc. 2012;134:3342–5.

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Kawamoto M, Sassa T, Wada T. Photoinduced control over the self-organized orientation of amorphous molecular materials using polarized light. J Phys Chem B. 2010;114:1227–32.

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Kawamoto M, Shiga N, Takaishi K, Yamashita T. Non-destructive erasable molecular switches and memory using light-driven twisting motions. Chem Commun. 2010;46:8344–6.

    Article  CAS  Google Scholar 

  16. 16.

    Takaishi K, Kawamoto M, Tsubaki K, Furuyama T, Muranaka A, Uchiyama M. Chem Eur J. 2011;17:1778–82.

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Korber K, Tang W, Hu X, Zhang X. A practical synthesis of 2-amino-2′-hydroxy-1,1′-binaphthyl (NOBIN). Tetrahedron Lett. 2002;43:7163–5.

    Article  CAS  Google Scholar 

  18. 18.

    Ding K, Wang Y, Yun H, Liu J, Wu Y, Terada M, Okubo Y, Mikami K. Highly efficient and practical optical resolution of 2-amino-2′-hydroxy-1,1′-binaphthyl by molecular complexation with N-benzylcinchonidium chloride: a direct transformation to binaphthyl amino phosphine. Chem Eur J. 1999;5:1734–7.

    Article  CAS  Google Scholar 

  19. 19.

    Bari L, Pescitelli G, Salvadori P. Conformational study of 2,2′-homosubstituted 1,1′-binaphthyls by means of UV and CD spectroscopy. J Am Chem Soc. 1999;121:7998–8004.

    Article  CAS  Google Scholar 

  20. 20.

    Saishoji A, Sato D, Shishido A, Ikeda T. Formation of bragg gratings with large angular multiplicity by means of the photoinduced reorientation of azobenzene copolymers. Langmuir. 2007;23:320–6.

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Hrozhyk U, Serak S, Tabiryan N, Hoke L, Steeves D, Kimball B, Kedziora G. Systematic study of absorption spectra of donor–acceptor azobenzene mesogenic structures. Mol Cryst Liq Cryst. 2008;489:257–72.

    Article  CAS  Google Scholar 

  22. 22.

    Rosini C, Superchi S, Peerlings H, Meijer E. Enantiopure dendrimers derived from the 1,1′-binaphthyl moiety: a correlation between chiroptical properties and conformation of the 1,1′-binaphthyl template. Eur J Org Chem. 2000;2000:61–71.

    Article  Google Scholar 

  23. 23.

    Takaishi K, Muranaka A, Kawamoto M, Uchiyama M. Planar chirality of twisted trans-azobenzene structure induced by chiral transfer from binaphthyls. J Org Chem. 2011;76:7623–8.

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    García-Amorós J, Velasco D. Recent advances towards azobenzene-based light- driven real-time information-transmitting materials. Beilstein J Org Chem. 2012;8:1003–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Mahimwalla Z, Yager K, Mamiya J, Shishido A, Priimagi A, Barrett C. Azobenzene photomechanics: prospects and potential applications. Polym Bull. 2012;69:967–1006.

    Article  CAS  Google Scholar 

  26. 26.

    Eyring H. The activated complex and the absolute rate of chemical reactions. Chem Rev. 1935;17:65–77.

    Article  CAS  Google Scholar 

  27. 27.

    Liu Z, Morigaki K, Enomoto T, Hashimoto K, Fujishima A. Kinetic studies on the thermal cis-trans isomerization of an azo compound in the assembled monolayer film. J Phys Chem. 1992;96:1875–80.

    Article  CAS  Google Scholar 

  28. 28.

    Kawamoto M, Aoki T, Wada T. Light-driven twisting behaviour of chiral cyclic compounds. Chem Commun. 2007;0:930–2, http://pubs.rsc.org/en/content/articlelanding/2007/cc/b616320c#!divAbstract.

  29. 29.

    Takaishi K, Kawamoto M, Tsubaki K, Wada T. Photoswitching of dextro/levo rotation with axially chiral binaphthyls linked to an azobenzene. J Org Chem. 2009;74:5723–6.

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Rau H. Spectroscopic properties of organic azo compounds. Angew Chem, Int Ed. 1973;12:224–35.

    Article  Google Scholar 

  31. 31.

    Pina J, Seixas de Melo J, Burrows H, Macanita A, Galbrecht F, Bunnagel T, Scherf U. Alternating binaphthyl-thiophene copolymers: synthesis, spectroscopy, and photophysics and their relevance to the question of energy migration versus conformational relaxation. Macromolecules. 2009;42:1710–9.

    Article  CAS  Google Scholar 

  32. 32.

    Han M, Hara M. Intense fluorescence from light-driven self-assembled aggregates of nonionic azobenzene derivative. J Am Chem Soc. 2005;127:10951–5.

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Bo Q, Zhao Y. Fluorescence from an azobenzene-containing diblock copolymer micelle in solution. Langmuir. 2007;23:5746–51.

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    Tsai B, Chen C, Hung C, Hsiao V, Chu C. Photoswitchable fluorescence on/off behavior between cis- and trans-rich azobenzenes. J Mater Chem. 2012;22:20874–7.

    Article  CAS  Google Scholar 

  35. 35.

    Fujino T, Arzhantsev S, Tahara T. Femtosecond time-resolved fluorescence study of photoisomerization of trans-azobenzene. J Phys Chem A. 2001;105:8123–9.

    Article  CAS  Google Scholar 

  36. 36.

    Han M, Hirayama Y, Hara M. Fluorescence enhancement from self-assembled aggregates: substituent effects on self-assembly of azobenzene. Chem Mater. 2006;18:2784–6.

    Article  CAS  Google Scholar 

  37. 37.

    Hicher H, Cunther P, Pohl D. Chapter 4: Handbook of laser induced dynamic grating. In: Hicher H, Cunther P, Pohl D, editors. Berlin, Germany: Springer-Verlag; 1986. pp. 94–122.

  38. 38.

    Blanche PA, Lemaire PhC, Maertens C, Dubois P, Jerome R. Polarization holography reveals the nature of the grating in polymers containing azo-dye. Opt Commun. 2000;185:1–12.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by a Grant-in-Aid for Scientific Research (C) (No. 15K05639) for MK from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. We thank Prof. Yu Nagase and Mr. Ryota Ueno of Tokai University for GPC measurements. We acknowledge the Support Unit of Bio-Material Analysis, Research Resources Center, RIKEN Brain Science Institute for the high-resolution mass spectrometry. We are grateful to the Materials Characterization Support Unit, RIKEN Center for Emergent Matter Science (CEMS), for the elemental analysis. We thank Dr. Zhaomin Hou and Dr. Masayoshi Nishiura of the Organometallic Chemistry Laboratory, RIKEN, for the DSC and TGA measurements. We acknowledge Dr. Mikiko Sodeoka and Dr. Yoshihiro Sohtome of the Synthetic Organic Chemistry Laboratory, RIKEN, for the optical rotation measurements. We also thank Dr. Keisuke Tajima and Dr. Kyohei Nakano of the Emergent Functional Polymers Research Team of RIKEN CEMS for the measurements of film thickness. We thank the Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yoshihiro Ito or Masuki Kawamoto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hassan, F., Sassa, T., Hirose, T. et al. Light-driven molecular switching of atropisomeric polymers containing azo-binaphthyl groups in their side chains. Polym J 50, 455–465 (2018). https://doi.org/10.1038/s41428-018-0034-x

Download citation

Further reading

Search

Quick links