Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Preparation of molecularly imprinted hydrogel layer SPR sensor chips with lectin-recognition sites via SI-ATRP

Abstract

Molecularly imprinted hydrogel layers with lectin-recognition sites were prepared on surface plasmon resonance (SPR) sensor chips via surface-initiated atom transfer radical polymerization (SI-ATRP) combined with molecular imprinting. The lectin-imprinted hydrogel layer sensor chips showed larger SPR signal change in response to a target lectin than nonimprinted hydrogel layer sensor chips. The larger SPR signal change was attributed to the strong affinity constant of the lectin-imprinted hydrogel layer for the target lectin. These results suggest that molecular recognition sites for the lectin were formed within the hydrogel layers by molecular imprinting. On the other hand, the SPR signal change of the lectin-imprinted hydrogel layer chip in the presence of other lectin was very small. Poly(2-methacryloxyethyl phosphorylcholine) as a main chain of the hydrogel layer inhibited nonspecific adsorption of other lectin. This paper describes that SI-ATRP with biomolecular imprinting is a useful method to design highly sensitive and selective SPR sensor chips with molecular recognition sites for a target lectin.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. Whelan RJ, Wohland T, Neumann L, Huang B, Kobilka BK, Zare RN. Analysis of biomolecular interactions using a miniaturized surface plasmon resonance sensor. Anal Chem. 2002;74:4570–6.

    Article  CAS  Google Scholar 

  2. Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev. 2008;108:462–93.

    Article  CAS  Google Scholar 

  3. Kooymann RPH, Kolkman H, Gent JV, Greve J. Surface plasmon resonance immunosensors: sensitivity considerations. Anal Chim Acta. 1988;213:34–5.

    Google Scholar 

  4. Liedberg B, Nylander C, Lunström I. Surface plasmon resonance for gas detection and biosensing. Sens Actuators. 1983;4:299–304.

    Article  CAS  Google Scholar 

  5. Schuster SC, Swanson RV, Alex LA, Bourret RB, Simon MI. Assembly and function of a quaternary signal transduction complex monitored by surface plasmon resonance. Nature. 1993;365:343–7.

    Article  CAS  Google Scholar 

  6. Silin V, Weetall H, Vanderah DJ. SPR studies of the nonspecific adsorption kinetics of human IgG and BSA on gold surfaces modified by self-assembled monolayers (SAMs). J Colloid Interface Sci. 1997;185:94–103.

    Article  CAS  Google Scholar 

  7. Calakos N, Bennett MK, Peterson KE, Scheller RH. Protein-protein interactions contributing to the specificity of intracellular vesicular trafficking. Science. 1994;263:1146–9.

    Article  CAS  Google Scholar 

  8. Stojanovic I, Schasfoort RB, Terstappen LW. Analysis of cell surface antigens by surface plasmon resonance imaging. Biosens Bioelectron. 2014;52:36–43.

    Article  CAS  Google Scholar 

  9. Frederix F, Bonroy K, Reekmans G, Laureyn W, Campitelli A, Abramov MA, Dehaen W, Maes G. Reduced nonspecific adsorption on covalently immobilized protein surfaces using poly(ethylene oxide) containing blocking agents. J Biochem Biophy Methods. 2004;58:67–74.

    Article  CAS  Google Scholar 

  10. Kurui Y, Ishikawa M, Kawamura A, Uragami T, Miyata T. SPR signals of three-dimensional antibody-immobilized gel layers formed on sensor chips by atom transfer radical polymerization. Chem Lett. 2012;41:1660–2.

    Article  Google Scholar 

  11. Nieba L, Niebar-Axmann SE, Persson A, Hämäläinen M, Edebratt F, Hansson A, Lidholm J, Magnusson K, Karlsson AF, Plückthun A. Biacore analysis of histidine-tagged proteins using a chelating NTA sensor chip. Anal Biochem. 1997;252:217–28.

    Article  CAS  Google Scholar 

  12. Wulff G. Molecular imprinting in cross-linked materials with the aid of molecular templates-a way towards artificial antibodies. Angew Chem Int Ed Engl. 1995;34:1812–32.

    Article  CAS  Google Scholar 

  13. Shea K. Molecular imprinting of synthetic network polymers: the de novo synthesis of macromolecular binding and catalytic sites. Trends Polym Sci. 1994;2:155–73.

    Google Scholar 

  14. Bossi A, Bonini F, Turner AP, Piletsky SA. Molecularly imprinted polymers for the recognition of proteins: the state of the art. Biosens Bioelectron. 2007;22:1131–7.

    Article  CAS  Google Scholar 

  15. Lépinay S, Kham K, Millot M-C, Carbonnier B. In-situ polymerized molecularly imprinted polymeric thin films used as sensing layers in surface plasmon resonance sensors: Mini-review focused on 2010–2011. Chem Pap. 2012;66:340–51.

    Article  Google Scholar 

  16. Morelli I, Chiono V, Ciardelli G, Silvestri D, Giusti P. Molecularly imprinted submicronspheres for applications in a novel model biosensor-film. Sens Actuators B Chem. 2010;150:394–401.

    Article  CAS  Google Scholar 

  17. Takeuchi T, Hayashi T, Ichikawa S, Kaji A, Masui M, Matsumoto H, Sasao R. Molecularly imprinted tailor-made functional polymer receptors for highly sensitive and selective separation and detection of target molecules. Chromatography. 2016;37:43–64.

    Article  Google Scholar 

  18. Asliyuce S, Uzun L, Rad AY, Unal S, Say R, Denizli A. Molecular imprinting-based composite cryogel membranes for purification of anti-hepatitis B surface antibody by fast protein liquid chromatography. J Chromatogr B. 2012;889–990:95–102.

    Article  Google Scholar 

  19. Zhang H, Ye L, Mosbach K. Non-covalent molecular imprinting with emphasis on its application in separation and drug development. J Mol Recognit. 2006;19:248–59.

    Article  CAS  Google Scholar 

  20. Vidyasankar S, Arnold FH. Molecular imprinting: selective materials for separations, sensors and catalysis. Curr Opin Biotechnol. 1995;6:218–24.

    Article  CAS  Google Scholar 

  21. Ertürk G, Uzun L, Tümer MA, Say R, Denizli A. Fab fragments imprinted SPR biosensor for real-time human immunoglobulin G detection. Biosens Bioelectron. 2011;28:97–104.

    Article  Google Scholar 

  22. Naraprawatphong R, Kawanaka G, Hayashi M, Kawamura A, Miyata T. Development of protein-recognition SPR devices by combination of SI-ATRP with biomolecular imprinting using protein ligands. Mol Impr. 2006;4:21–30.

    Google Scholar 

  23. Kurui Y, Kawamura A, Uragami T, Miyata T. Formation of thin molecularly imprinted hydrogel layers with lectin recognition sites on SPR sensor chips by atom transfer radical polymerization. Chem Lett. 2014;43:825–7.

    Article  Google Scholar 

  24. Wichterle O, Lím D. Hydrophilic gels for biological use. Nature. 1960;185:117–8.

    Article  Google Scholar 

  25. Ahmed EM. Hydrogel: Preparation, characterization, and applications: A review. J Adv Res. 2015;6:105–21.

    Article  CAS  Google Scholar 

  26. T Miyata, Stimuli-Responsive Polymers and Gels, Supramolecular Design for Biological Applications (ed. N Yui), Chapter 9, CRC Press, Boca Raton, 191–225 (2002).

  27. Miyata T, Asami N, Uragami T. A reversibly antigen-responsive hydrogel. Nature. 1999;399:766–9.

    Article  CAS  Google Scholar 

  28. Miyata T. Preparation of smart soft materials using molecular complexes. Polym J. 2010;42:277–89.

    Article  CAS  Google Scholar 

  29. Miyata T, Asami N, Uragami T. Preparation of an antigen-sensitive hydrogel using antigen-antibody bindings. Macromolecules. 1999;32:2082–4.

    Article  CAS  Google Scholar 

  30. Miyata T, Jige M, Nakaminami T, Uragami T. Tumor marker-responsive behavior of gels prepared by biomolecular imprinting. Proc Natl Acad Sci USA. 2006;103:1190–3.

    Article  CAS  Google Scholar 

  31. Miyata T, Hayashi T, Kuriu Y, Uragami T. Responsive behavior of tumor-marker- imprinted hydrogels using macromolecular cross-linkers. J Mol Recognit. 2012;25:336–43.

    Article  CAS  Google Scholar 

  32. Kawamura A, Kiguchi T, Nishihata T, Uragami T, Miyata T. Target molecule-responsive hydrogels designed via molecular imprinting using bisphenol A as a template. Chem Commun. 2014;76:11101–3.

    Article  Google Scholar 

  33. Miyata T, Uragami T, Nakamae K. Biomolecule-sensitive hydrogels. Adv Drug Deliv Rev. 2002;54:79–98.

    Article  CAS  Google Scholar 

  34. Jones DM, Brown AA, Huck WTS. Surface-initiated polymerizations in aqueous media: effect of initiator density. Langmuir. 2002;18:1256–69.

    Google Scholar 

  35. Matsumoto K, Tiu BDB, Kawamura A, Advincula RC, Miyata T. QCM sensing of bisphenol A using molecularly imprinted hydrogel/conducting polymer matrix. Polym J. 2016;48:525–32.

    Article  CAS  Google Scholar 

  36. Miyata T, Nakamae K. Polymers with pendant saccharides –“Glycopolymers. Trend Polym Sci. 1997;5:198–206.

    CAS  Google Scholar 

  37. Ishihara K, Nomura H, Mihara T, Kurita K, Iwasaki Y, Nakabayashi N. Why do phospholipid polymers reduce protein adsorption? J Biomed Mater Res. 1998;39:323–30.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a Grant-in-Aid for Scientific Research (B) (No. 15H03026) and a Grant-in-Aid for challenging Exploratory Research (No. 17K19163) from the Japan Society of the Promotion of Science (JSPS) and by the AMED S-innovation Program for the development of biofunctional materials for the realization of innovative medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Miyata.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Naraprawatphong, R., Kawamura, A. & Miyata, T. Preparation of molecularly imprinted hydrogel layer SPR sensor chips with lectin-recognition sites via SI-ATRP. Polym J 50, 261–269 (2018). https://doi.org/10.1038/s41428-017-0013-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-017-0013-7

Search

Quick links