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Abstract
As an alternative to petroleum-based compatibilizing agents, we developed lignin derivatives for compatibilizing agents of
carbon fiber-reinforced plastics that have thermoplasticity. In this study, alkyl chains were introduced into alkali lignin at
various ratios to optimize the compatibility of the lignin derivatives with both polypropylene and carbon fiber. The
interfacial shear strength between the two materials was improved from 8.2 to 17.2MPa by mixing with the optimized lignin
derivative. The value is comparable to that achieved with a typical petroleum-based compatibilizing agent (18.3 MPa).

Introduction

Polysaccharides derived from plant biomass have been
highlighted as resources of ethanol, material building
blocks, and plastics [1, 2]. Although lignin is also known to
be a major component of plant biomass, its applications
have not been well developed. Lignin has been suggested
for use in various fields, such as a water reducer for concrete
[3] and as an aromatic chemical source, e.g., vanillin [4, 5],
and strong demand exists for further valuable applications.

We focused on the aromatic rings of lignin to develop
useful materials. Aromatic polymers are known to be
compatible with carbon nanotubes via π–π interactions [6],
and lignin is also compatible with carbon materials such as
carbon nanotubes [7, 8] and graphene [9], exhibiting similar
interactions. Because lignin is, therefore, expected to be
compatible with carbon fiber (CF), it was applied as a
compatibilizing agent of carbon fiber-reinforced plastics
(CFRPs) in this study.

We selected polypropylene (PP) as a matrix of the CFRP
in this study. PP is a typical thermoplastic used for a range
of materials applications, such as in automobile bumpers
[10], because of its good chemical and mechanical proper-
ties and good processibility [11]. PP, therefore, appears to
be a suitable polymer for CFRPs. However, the compat-
ibility of CF and PP is known to be poor, which prevents
the preparation of a homogeneous composite. Maleic-
anhydride-modified polypropylene (MAPP) is used as a
compatibilizing agent [12], but it is a petroleum-based
polymer. In the present study, we proposed using lignin as
an alternative to MAPP.

Experimental procedure

Materials

Alkali lignin and dimethyl sulfoxide were purchased from
Sigma-Aldrich Co., Llc. (St. Louis, MO, USA) and used as
received. 1-Ethyl-3-methylimidazolium acetate was purchased
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from Iolitec Ionic Liquids Technologies GmbH (Heilbronn,
Germany) and used after drying. Isopropenyl acetate, vinyl
butyrate, vinyl hexanoate, vinyl decanoate, and vinyl pal-
mitate were purchased from Tokyo Chemical Industry Co.,
Ltd. (Tokyo, Japan) and used as received. Methanol and
xylene were purchased from Kanto Chemical Co., Inc.
(Tokyo, Japan) and used as received. PP (Novatech FY-6)
was purchased from the Japan Polypropylene Corporation
(Tokyo, Japan) and used as received. Carbon fiber (T700/
12 K) was purchased from Toray Industries, Inc. (Tokyo,
Japan) and used after washing with acetone under sonica-
tion, followed by washing with methanol and water without
sonication.

Synthesis of lignin derivatives

Lignin derivatives were synthesized through a transester-
ification reaction [13]. Alkali lignin (200mg) was dissolved in
2.4mL of a mixed solution of dimethyl sulfoxide/1-ethyl-3-
methylimidazolium acetate (1/0.04, v/w) and heated to 80 °C
for 16 h with an excess amount of ester-donating agents under
an Ar atmosphere. The obtained lignin derivatives (n= 2–16;
C2–C16 lignin, see Fig. 1) were purified through dialysis in
methanol. The yields of C2, C4, C6, C10, and C16 lignin were
75%, 77%, 59%, 71%, and 73%, respectively. The OH
content of the lignin derivatives was measured by 31P NMR
as previously reported [14]. The OH contents of C4, C6, C10

and C16 lignin were 10%, 11%, 13%, and 11%, respec-
tively, unless otherwise noted, while that of C2 lignin could
not be determined because it was not soluble in any solvents.
Lignin derivatives containing greater amounts of hydroxyl
groups were synthesized by reducing the reaction time.

Preparing composites of PP and lignin derivatives
and their microscopic observation

PP (2.0 g) and lignin derivatives (60mg) were dissolved in
xylene (100 mL) at 130 °C. Composite pellets were prepared
by solution casting, followed by kneading at 180 °C (MC5,
DSM Xplore Instruments BV, Sittard, Netherlands). Micro-
scopy images were captured using an ECLIPSE 50i micro-
scope (Nikon Instruments Inc., Tokyo, Japan). A composite
of PP and MAPP was prepared by the same method.

Microbond test

A microbond test [15] was performed using a MODEL
HM410 (Tohei Sangyo Co., Ltd., Fukushima, Japan) to
determine the interfacial shear strength (IFFS) between CF
and PP with and without lignin derivatives. Microdroplets
with a diameter of ~80 μm were selected, and a loading rate
of 2.0 μm/s was applied to obtain the interfacial debonding
load. The IFFS was an average of ≥ 30 measurements.

Results and discussion

The miscibility of alkali lignin and PP was investigated as a
preliminary study. After alkali lignin (3 wt%) and PP were
kneaded, the composite was examined under an optical
microscope (Fig. 2). Agglomerates of alkali lignin (brown
parts) and pure PP (transparent parts) were observed; they
were clearly immiscible. This immiscibility was due to the
different polarities of alkali lignin and PP: alkali lignin has
hydroxyl groups in addition to aromatic rings and, there-
fore, is partly polar, while PP is composed of only hydro-
carbons and is completely nonpolar.

We capped the hydroxyl groups of alkali lignin by
acetylation to decrease the polarity of the alkali lignin (C2

lignin). Acylation of the alkali lignin was performed using a
method we have developed involving the use of an ionic
liquid as both a solvent and catalyst [13]. The C2 lignin was
also observed under an optical microscope after being
kneaded together with PP (see Fig. 2). Agglomerates of C2

lignin and pure PP were clearly observed; they were
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Fig. 1 Structures of lignin derivatives (n= 2, 4, 6, 10, 16; C2, C4, C6,
C10, C16 lignin)

Fig. 2 Macroscopic and microscopic images of composites of PP and
alkali lignin or lignin derivatives (Color figure online)
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immiscible. This result indicated that capping the hydroxyl
groups is not sufficient to make it miscible with PP.

To increase the interaction between alkali lignin and PP,
the alkyl chain of the acyl group was extended (C4, C6, C10,
and C16 lignin, see Fig. 1), and the miscibility with PP was
investigated. C4, C6, and C10 lignins were partly miscible,
and C16 lignin was completely miscible, at least as indicated
by optical microscopy. The results showed that alkali lignin
can be miscible with PP, at least partly, by capping the
hydroxyl groups of alkali lignin with acyl groups that have
a hydrocarbon chain length of at least four.

The C4–C16 lignins were subjected to a microbond test to
investigate their compatibilizability. The test revealed the
IFSS between the CF and PP/lignin derivative composites
(lignin derivative content in PP: 3 wt%). The IFSS between
the CF and PP without lignin derivatives was 8.2 MPa
(Fig. 3). The IFSS values were 14.1, 13.4, and 12.3 MPa
when adding C4, C6, and C10 lignin, respectively. This result
clearly demonstrated a considerable increase in the IFSS.
Moreover, these values did not differ greatly from the
strength observed with MAPP, a petroleum-derived com-
patibilizing agent (18.3 MPa). There was no increase in
IFSS when adding C16 lignin (8.3 MPa). We focused on the
miscibility of PP and C16 lignin at the molecular level in
determining the reasons for these findings by using differ-
ential scanning calorimetry. Supplementary Fig. S1 presents
the results. Concerning the composites of PP and C4–C10

lignins, a melting peak was not observed at the melting
point of pure PP (164 °C) but was observed at a lower
temperature. This finding suggests that all PP interacted
with the lignin derivatives, while some agglomerates of the
lignin derivatives were observed by optical microscopy. On
the other hand, the melting peak was observed at the
melting point of pure PP for the PP/C16 lignin composite,
suggesting that a portion of PP does not interact with C16

lignin, whereas agglomerates of the C16 lignin were not

observed via optical microscopy. The immiscibility of PP
and the C16 lignin may be attributed to aggregation of the
C16 lignin in PP at the molecular level, which is caused by
interactions between C16 lignin molecules. It is noted that
C2 lignin was also subjected to a microbond test, although
C2 lignin is not miscible with PP. It was confirmed that the
IFFS did not increase (8.4 MPa). Based on these results, the
miscibility of alkali lignin and PP at both the micro- and
molecular levels is a key factor in the suitable design of
lignin derivatives, and C4–C10 lignins were found to be
suitable lignin derivatives as compatibilizing agents.

Exploiting the hydrogen bond between lignin derivatives
and CF is one method for increasing IFSS because CF
contains a hydroxyl group and carboxyl group as defects
(Fig. S2). The residual OH content increased stepwise to
50%, and the IFSS between CF and PP with lignin deri-
vatives was measured (Fig. 4). The experiment was con-
ducted with C4 lignin because it showed the highest IFSS
among the lignin derivatives (see Fig. 3). When the residual
OH content was 10% (same sample shown in Fig. 3), the
IFSS was 14.2 MPa. While the IFSS between CF and C4

lignin with a residual OH content of 21% was similar to that
of the composite containing 10% OH (14.1 MPa), the IFSS
of the composite containing 28% OH increased con-
siderably to 17.2 MPa. Increasing the OH content of alkali
lignin was confirmed to be an effective way of increasing
the IFSS. On the other hand, the IFSS was 14.1 MPa when
the residual OH content was 50%. This result may be
explained by a decrease in CH–π interactions [16] between
alkyl chains in C4 lignin and the CF surface. Based on these
results, the IFSS between PP and CF can be improved by
controlling the OH content of the lignin derivatives, con-
sidering the effects of the hydrogen bond. The highest IFSS
obtained in this study (17.2 MPa; residual OH content is
28%) was comparable to the IFSS of the composite

Fig. 3 IFSS between CF and PP with and without lignin derivatives.
IFSS between CF and PP with MAPP (3 wt%) is also shown as a
reference

Fig. 4 IFSS between CF and PP with C4 lignin whose residual OH
content was 10–50%. IFSS between CF and PP with and without
MAPP (3 wt%) is also shown as a reference
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containing MAPP (18.3 MPa). The lignin derivative is thus
a strong candidate for substituting for MAPP, which is
made from petroleum.

Conclusion

Alkali lignin derivatives were developed to serve as com-
patibilizing agents of CFRPs. While alkali lignin and C2

lignin were not miscible with PP, C4−, C6−, and C10 lig-
nins were partly miscible and C16 lignin was completely
miscible, as indicated by optical microscopy. The IFSS
between CF and PP increased from 8.2 to 14.1, 13.4, and
12.3 MPa when adding C4, C6, and C10 lignin, respectively.
The IFSS was further improved to 17.2 MPa by increasing
the OH content in C4 lignin. The highest IFSS with C4

lignin was comparable to that with MAPP (18.3 MPa),
suggesting that C4 lignin is a viable candidate for sub-
stituting for petroleum-based compatibilizing agents.
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