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Abstract
Various memristive devices have been proposed for use in neuromorphic computing systems as artificial synapses.
Analog synaptic devices with linear conductance updates during training are efficiently essential to train neural
networks. Although many different analog memristors have been proposed, a more reliable approach to implement
analog synaptic devices is needed. In this study, we propose the memristor of a Cu/SiOx/implanted a-SiGex/p

++ c-Si
structure containing an a-Si layer with properly controlled conductance through Ge implantation. The a-SiGex layer
plays a multifunctional role in device operation by limiting the current overshoot, confining the heat generated during
operation and preventing the silicide formation reaction between the active metal (Cu) and the Si bottom electrode.
Thus, the a-SiGex interface layer enables the formation of multi-weak filaments and induces analog switching
behaviors. The TEM observation shows that the insertion of the a-SiGex layer between SiOx and c-Si remarkably
suppresses the formation of copper silicide, and reliable set/reset operations are secured. The origin of the analog
switching behaviors is discussed by analyzing current-voltage characteristics and electron microscopy images. Finally,
the memristive-neural network simulations show that our developed memristive devices provide high learning
accuracy and are promising in future neuromorphic computing hardware.

Introduction
As we enter a new era of big data, it is becoming

increasingly important to find more efficient ways to
process vast amounts of data. The current standard von
Neumann computing architecture, however, is facing
limitations in performance due to difficulties in data
transfer between the central processing unit and mem-
ory1–6. To address this issue, neuromorphic computing
systems, which are based on biological human brains,
have been proposed as an alternative technology7–11.

Various neural networks consisting of artificial neurons
and synapses quickly and efficiently perform intelligent
functions in parallel computing architectures. Artificial
neuromorphic computing systems mimicking the human
brain achieve intelligent tasks, such as recognition, rea-
soning, and learning. Inspired by biological brains that
handle complex tasks at low power, neuromorphic com-
puting systems are in the spotlight as a way to overcome
these limitations12.
Neuromorphic computing systems consist of artificial

neurons and synaptic devices as fundamental building
blocks. Among the synaptic devices, memristive devices
are one of the most popular approaches to mimic biolo-
gical synapses13–18. Memristors generally use a metal-
insulator-metal structure, and the commonly proposed
model for conductance switching is the formation and
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rupture of conductive filaments inside an active layer.
When one or more filaments are connected between the
top and bottom electrodes, memristive devices produce a
low-resistance state (LRS), while they produce a high-
resistance state (HRS) when the filaments break. These
memristive devices can be divided into valence change
memory (VCM) and conductive bridging random access
memory (CBRAM) based on the formation mechanism of
conductive filaments19–21. The conductive filaments in
VCM devices mainly consist of oxygen-deficient metal
oxide phases modulated by oxygen vacancy concentra-
tions, while CBRAM devices have conductive filaments
composed of reduced metal ions provided by the active
electrode. CBRAM devices typically consist of an insu-
lating layer sandwiched between one active metal elec-
trode and another inert electrode. Active electrodes, such
as Cu, Ag, or Ni, are mainly used as the top electrodes,
and metal oxide-based insulators, such as SiOx, a-Si, or
SiNx, have been used as the switching layer7,22. CBRAM
typically has a longer retention and a higher on/off ratio
than VCM23. CBRAM has shown promising performance
as a nonvolatile memory device and has commercial
applications24; however, it has struggled for use as artifi-
cial synaptic devices in neuromorphic computing appli-
cations7,25,26. One of the challenging issues for synaptic
devices for high-performance computing is analog
switching to mimic biological synapses with multilevel
conductance levels. Gradual analog switching of the
synaptic devices ensures multilevel conductance states
with repetitive voltage pulses, which is one of the essential
requirements for high-accuracy recognition in artificial
neural network computing12.
Conventional CBRAM devices, however, have faced

challenges in their use as artificial synaptic devices in
neuromorphic computing applications, such as exhibiting
an abrupt switching behavior caused by the so-called
positive feedback effect20. Once metal clusters or fila-
ments are formed in a switching layer, the formation of
conductive filaments is accelerated by increases in device
temperature induced by Joule heating, resulting in very
sharp switching near a threshold set voltage. This abrupt
switching causes difficulty to precisely modulate the
conductance levels of the synaptic devices, resulting in
poor performance in neuromorphic computing. To sup-
press abrupt switching and induce gradual switching in
CBRAM devices, various approaches have been attemp-
ted, such as modification of program schemes27,28, seed-
ing of filament formation sites29,30, incorporation of
thermal enhancement layers31 or graded metal composi-
tion layers4,32. Many previous approaches have shown
promising results; however, considering the complexities
of the fabrication process and CMOS compatibilities, a
novel approach to address these issues is needed.

Accordingly, in this study, we propose a multilayered
memristor consisting of Cu/SiOx/a-SiGex/c-Si that exhi-
bits gradual switching behavior induced by a multiple
weak filament formation mechanism33. An amorphous Si
layer was inserted as a current limiting layer under the
switching layer, SiOx, to suppress the positive feedback
effect and in turn prevent abrupt switching. In this study,
the resistance of the current limiting layer was precisely
controlled by varying the implantation dose of Ge ions.
The implanted Ge ions induced structural defects in the
amorphous Si-based current limiting layer, which served
as carrier transport sites34. We demonstrated that the
optimal resistance of the current limiting layer could be
obtained by Ge implantation for reliable analog switching
of CBRAM devices. The suppression of the second phase
formation at the electrode interface was another key
factor. We confirmed that no second phase was formed at
the interface of an active metal electrode and a switching
layer by electron microscopy. Our proposed Cu-based
bilayer device exhibited promising analog behavior in
terms of gradual switching characteristics while main-
taining high on-off ratios through the insertion and con-
ductivity tuning of the current limiting layer. Finally, we
performed MNIST (Modified National Institute of Stan-
dards and Technology) recognition simulations of mem-
ristive neural networks considering the actual behaviors of
the memristor devices developed in this study and
demonstrated a high recognition efficiency approaching
90%. This result showed that Cu-based bilayer memristor
devices could have potential applications in memristive
neuromorphic computing systems as artificial synapses.

Experimental
The membrane was a Cu/SiOx/a-SiGex/p

++ c-Si
structure featuring a via-hole design. An a-Si was depos-
ited onto the p++ c-Si wafer using a low-pressure che-
mical vapor deposition (SHF-150 L) process, with a
thickness of 70 nm. The pressure and temperature during
the deposition were maintained at 150 mTorr and 550 °C,
respectively, and the flow rate of SiH4 gas was 60 sccm.
Ge ion implantation was performed after LPCVD a-Si

was formed on a Si wafer substrate. For the ion implan-
tation process, a 400 kV ion implanter owned by the
Korea Institute of Science and Technology was utilized.
The Ge ions were accelerated by the ion acceleration part
of the implantation system, moved along the ion beam
line and were implanted into the a-Si thin film fixed to the
ion chamber. The Ge ions were accelerated to 70 kV at
room temperature and irradiated with fluxes of 1 × 1010,
1 × 1011, 1 × 1012, 1 × 1013, 1 × 1014, 5 × 1014, 8 × 1014, and
4 × 1015 fluxes/cm2. The ion flux was measured using a
Faraday cup and was maintained at a level of less than
50 nA/cm2 s.
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To measure the conductance of the a-SiGex thin film
under different flow rates, a via-hole-type device with an
Ag/a-SiGex/c-Si structure was manufactured. A 100 nm
SiNx thin film was deposited on the a-SiGex layer using
plasma-enhanced chemical vapor deposition. The SiNx

thin film was patterned with a photoresist mask with a
circular hole array shape and selectively etched in a 1:6
BOE solution to form a via-hole structure. The photo-
resist was removed with acetone, and 300-nm thick Ag
top electrodes were made using the lift-off process and
thermal evaporation equipment. The device, prepared as
described above, utilized a source measuring device
(Keithley 236) connected to the probe station to measure
the conductance of the a-SiGex thin film. The oscillation
current–voltage (I–V) characteristic curve was obtained
through a voltage sweep of 0→+5 V and 0→−5 V.
The analog synaptic Cu-based bilayer device was man-

ufactured by the above process. After the via-hole struc-
ture was formed, a SiOx layer of 5 nm was deposited
through PECVD, and a 300-nm thick Cu top electrode
was fabricated using the lift-off process and beam eva-
poration equipment.
TEM was conducted to observe the interface of the

device and the cluster morphology. The specimen was
analyzed using the Hitachi-NX5000 through the focused
ion beam (FIB) technique. A device that was FIB milled
enough to transmit an electron beam was observed
through a Titan TM 80-300. Both conventional trans-
mission electron microscopy and scanning transmission
electron microscopy were performed via the above
equipment. The Cu silicide at the a-Si or the c-Si interface
with a switching layer was observed using TEM. The
distribution of the metal cluster was also confirmed by
visualizing the cross-sectional area of the device under an
applied voltage.
The electrical properties of the device were tested using

the source measurement devices Keithley 236 and
Keithley 4200. To obtain the electrical properties of the
Cu-based bilayer device, the voltages were repeatedly
swept at 0→+7 V and 0→−7 V. To verify the analog
characteristics of the device, repetitive pulse signals were
applied. A potentiation/depression pulse was applied for
10 μs with an amplitude of 11 V/−8 V. The read pulse was
applied with an amplitude of 1 V. To measure the synaptic
retention time, we applied 50, 100, 200, 500, and 1000
times the same amplitude and width as the
potentiation pulse.
The morphology of a-Si in Ge implants was simulated

using the TRIM software package (SRIM 2003 ver.13).
TRIM is software that uses the cascade Monte Carlo
method to calculate the spatial distribution and number
of vacancy defects of Si and Ge atoms on the injection
amount of Ge ions. The simulation consisted of an a-Si
(70 nm)/c-Si layer, and the density was set to 2.285 g/cm3

and 2.329 g/cm3 35. The acceleration voltage was adjusted
to 70 kV, and the input values for displacement energy
and lattice bonding energy were 12 eV and 2 eV, respec-
tively.

Vancancy concentration ¼ vi
vacancies

ions

� �

´ fluence ions
cm2

� �
´ 1

ρ atoms
cm3ð Þ ´ 0:01

Through the above equation, the vacuum concentration
by depth was derived. Fluence is the number of ions
injected per unit area. Y is the atomic density of the
substrate. vi is calculated by subtracting the replacement
collisions from the target displacement from the number
of vacancies generated when an ion was injected. The
multiplication factor of 0.01 is used because ~99% of
implant damage is immediately recovered during
implantation at room temperature36,37.
MNIST pattern recognition simulation was conducted

with the Cu-based bilayer device as a hardware model.
To reflect the experimental synaptic device character-
istics, the limited number of states and nonlinearity
were considered. The simulation was conducted with a
multilayer perceptron with three neuron layers. The
MNIST pattern consisted of 28 × 28 pixels and an input
layer with a total of 784 neurons. The hidden layer had
128 neurons, and the output neurons were composed of
10 different labels. Initially, a random input value was
entered, and the weight was gradually updated through
the gradient descent method. The weight strength of the
input was reflected by the hardware model and passed
through the synapse to the next neuron. The collected
values were transmitted to the next neural network
using an activation function called ReLU (rectified linear
unit). Finally, the softmax function produced a nor-
malized probability distribution of each output value. A
total of 60,000 MNIST training datasets were used to
perform learning, and the learning was repeated
100 times.

Results and discussion
To investigate the insertion effect of a current limiting

layer, I–V characteristics of the single-layer structure
device of (a) Cu/SiOx/p

++ c-Si and the double-layer
structure device of (b) Cu/SiOx/a-Si/p

++ c-Si were mea-
sured, as shown in Fig. 1. For both of the measurements,
the compliance current was set at 1.0 mA. In the case of a
single layer, when the device was formed, a strong single
filament appeared to be made. This result was confirmed
due to the abrupt current increase at the threshold
switching voltage. Furthermore, once the devices were
formed, the devices could not be reset and became stuck
in a set state, as shown in Fig. 1a. The reasons for the set-
stuck failure was the excessive formation of the filaments
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or irreversible chemical reactions at the electrode inter-
face without the current limiting layer38. When an
amorphous a-Si current limiting layer was inserted
between a switching layer and a bottom electrode, the set
switching exhibited a gradual transition, and reset failure
was not observed, as shown in Fig. 1b. Additionally, the
set-reset transition was repetitively enabled. The gradual
set switching observed in the bilayer devices was poten-
tially due to the formation of multiple filaments in an
active layer, as illustrated in the device schematic. This
will be clarified from the microscopic observation of the
devices by transmission electron microscopy (TEM) later
in this study. Different metal materials, such as Ag and Ni,
were tested for the active electrode in the bilayer device
structure. Considering the memory retention time and
endurance of the devices, we used Cu as a suitable active
electrode. Detailed device characteristics with Ag, Cu and
Ni as active electrodes are provided in Figure S1. For the
rest of this study, Cu was used as the active electrode.
To investigate whether a second phase, such as silicide,

was formed at the interface between Cu/a-Si and Cu/c-Si,
test samples were fabricated by depositing a Cu thin film
on a c-Si wafer and on an a-Si-coated Si wafer. In Fig. 2,
the XTEM images and EDS mapping of the test samples
were measured to show the Cu/c-Si interface and Cu/a-Si
interface. From Fig. 2a, a thin layer of Cu silicide was

formed at the Cu/c-Si interface. The Cu silicide phase was
identified by analyzing the lattice constants in the HR-
TEM images. A crystalline Si phase with a lattice constant
of 0.20 nm was observed, as shown in in Fig. 2a, and a Cu
silicide phase in the region between the Cu thin film and
the Si wafer layer had lattice constant values of 0.26 nm
and 0.22 nm. This result supported that the Cu silicide
phase was Cu15Si4

39,40. Figure 2c presents the EDS map-
ping images of the Cu/c-Si sample denoted in Fig. 2a.
Copper silicides in the presence of oxygen incorporated
during deposition of Cu are partially converted into SiOx

and Cu, as discussed in more detail in the supplementary
information (Fig. S2). The SiOx layer was uniformly dis-
tributed at the interface, as shown in Fig. 2c. Additionally,
Si and Cu were intermixed in the region between the Si
wafer and the Cu thin film where the silicide was formed.
Figure 2b shows the cross-sectional TEM images of the
test sample with the insertion of an a-Si thin film between
the Cu thin film and the Si wafer. Different from the Cu/c-
Si interface, a Cu silicide phase was not observed at the
Cu/a-Si interface. The EDS mapping results of the Cu/a-
Si/p++ c-Si interface in Fig. 2d showed that SiOx was
rarely observed, and the distribution of Si and Cu devices
was more abrupt compared to Fig. 2c. This effect was
more evident in high-temperature experiments (Fig. S2).
Memristor devices reach over 200 °C locally by Joule

Fig. 1 Schematics and current-voltage curves for Cu/SiOx/p
++ c-Si and Cu/SiOx/a-Si/p

++ c-Si memristive devices. a Schematic view of a Cu/
SiOx/p++ c-Si device with a via-hole structure. b Schematic diagram of a device in which a-Si is inserted as a buffered layer into the single-layer
device of the structure. Graphs below the schematic diagrams of the devices are the characteristic current–voltage curves of the corresponding
devices.
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heating during forming and programming opera-
tions31,39,41. To mimic this heating effect, the test samples
were annealed at 200 °C in a N2 atmosphere for 20min.
Heat treatment accelerated the formation of Cu silicide,
especially for the test sample without a-Si. In contrast, Cu
silicide was not observed in the test sample with a-Si. The
detailed TEM studies are presented in the supplementary
information (Fig. 2S). The rich hydrogen contents of the
a-Si thin film were considered to prevent silicide forma-
tion at the Cu/c-Si interface, ensuring reliable switching
behavior of the CBRAM devices.
However, the LPCVD a-Si layer with a conductance value

of 100 nS greatly limited the current. This excessive current
limitation prevented sufficient filament formation in the
switching layer. Therefore, the device using the a-Si layer as
the underlayer provided a low on/off (LRS/HRS) ratio.
To adjust the conductance of the a-Si thin film, Ge ion

implantation with varying influences and injection angles
was conducted. The Ge ion was selected as an implanta-
tion element since it does not form a second phase with
Si42. In addition, the Ge ion has a larger atomic size than
Si, effectively inducing defect formation in the a-Si layer.
To confine the implanted Ge ions within the a-Si
underlayer, both the fluences and the injection angles
were accordingly adjusted. The defect formation profiles

depending on the fluences and injection angles were
calculated by a TRIM method and are presented in Fig.
S3. Based on the TRIM simulation results, the proper
implantation parameters were selected. The injection
angles were adjusted in the range of 7–65° and the
implantation dose or fluence was varied from
1010–1015 flux/cm2, as shown in Fig. 3a, b.
The conductivity of the ion-injected a-SiGex thin film was

measured and is presented in Fig. 3b. The conductance of
the unimplanted a-Si thin film was 2 × 10−7 S, and the
conductance value of the a-Si thin film increased as the ion
implantation fluence increased. The highest conductance
was obtained at a 1 × 1014 flux/cm2

fluence, followed by
decreases in the conductance with increasing fluence. This
conductance decrease could potentially be attributed to the
heat generated in the a-Si thin film during high fluence
injection, resulting in self-annealing and then defect anni-
hilation. The conductance of the a-SiGex thin film by
injection flux could be classified into four main ranges. The
conductance below 2 × 10−6 S is classified as low con-
ductance (LC), that above 2 × 10−5 S as high conductance
(HC) and that between them as medium conductance (MC).
MC can be classified further according to the fluence. MC1
is the injection range at 1 × 1012 fluence/cm2, and MC2 is
that at 1 × 1016 fluence/cm2. In Fig. 3c, the I–V

Fig. 2 XTEM images and EDS mapping data of Cu/c-Si and Cu/a-Si interfaces. a, b XTEM data of Cu silicide formed at the c-Si or at the a-Si
interface, respectively. The figure below shows an enlarged image of the XTEM of the interface. The lattice distance was extracted from a high-
resolution XTEM image of the silicide formed at the Cu/c-Si interface. c, d EDS mapping data for the areas indicated by dotted lines in (a) and (b),
respectively. O, Si, and Cu were selected as the detection elements.

Kim et al. NPG Asia Materials (2023) 15:48 Page 5 of 12



characteristics of the two-terminal devices with an Ag/a-
SiGex/p

++ c-Si structure were measured in each region of
LC, MC1, HC, and MC2. The voltage was swept in the
direction 0→ 5 V→ 0→ -5 V→ 0. The currents of the
device at the same voltage were proportional to the con-
ductances of the a-SiGex thin film with various fluences. The
I–V curves were symmetric on the MC1, HC and MC2
devices, while the curve of the LC device was not symmetric.
The current transport mechanism of the Ge-implanted a-
SiGex thin film was confirmed by the slope of the J vs. 1/E
curves in Fig. 3d, where E is an electric field applied in the
device. The vacancy defects formed in the implanted a-SiGex
thin film acted as deep traps, and the current flowed through
the trap-assisted-tunneling (TAT) phenomenon in which
electrons were predominantly transported via the traps43–46.

Ji � expð� 4
ffiffiffiffiffiffiffiffiffiffiffiffi
2qmox

p
3

Φt
3
2=EÞ

The equation above shows the correlation between the
current density and E when the device current flows in
TAT mode. The linear relationship between 1/E and lnJ in
a-SiGex thin films in Fig. 3d showed that the currents in
all test devices predominantly flowed by the TAT
mechanism. This result supported the conductance
increases with increasing fluence, as shown in Fig. 3b,
which was attributed to the increased implantation-
induced defects. The trap density as a function of the
ion fluence could also be determined using the TAT
model, and a good correlation between the conductance
and the trap density was observed; more details can be
found in the supplementary information (Fig. S5 and
Table S1).
The effects of the conductance of the current limiting

layer on the electrical characteristics of the devices were
investigated. A Cu-based bilayer device, where the a-SiGe
underlayer had various conductances of LC, MC1, HC,

Fig. 3 Resistances of the Ge-implanted a-Si thin films with different Ge+ ion fluences. a Schematic diagram showing an accelerated Ge ion
being implanted into the a-Si layer at an incident angle of 7–65°. At this time, defects that mainly occur in the a-Si layer are indicated. b Graph
showing the relationship between Ge ion fluxes injected into the a-Si layer and conductance. The conductance of the a-SiGex layer was measured by
constructing a device with the Ag/a-Si/c-Si structure, as shown in the figure. The conductance of the ion-injected layer was grouped into four regions
and classified (LC, MC1, HC, MC2). c Current–voltage graph with the conductance area. d Graph showing the correlation between the current density
and electric field by the conductance area.
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and MC2, was fabricated, and the I–V characteristics were
verified and are presented in Fig. 4a–d. The voltage was
swept in the direction 0→ 7 V→ 0→ -7 V→ 0, and the
voltage sweep was repeated 100 times for all devices.
Under all conditions, the devices exhibited gradual
switching behaviors, and in both the HRS and LRS states,
the device conductance depended on the conductance of
the a-SiGex underlayer. As expected, the increased con-
ductances of the current limiting underlayer resulted in
increased device resistances.
The cumulative probabilities of the resistances in the

HRS and LRS states for all the devices are presented in
Fig. 4e–h. Depending on the conductances of the a-SiGex
thin film, the on-resistance (Ron) and off-resistance (Roff)
ratio of the devices varied. The Ron/Roff ratio represents a
dynamic range of elements, and a larger Ron/Roff ratio is
more beneficial in neural network computing. The Ron/
Roff ratio of the device with an LC underlayer was 1.2, and
the Ron/Roff ratio of the device with an HC underlayer was
8.9. This results showed that excessive current restriction
inhibited strong filament formation in the switching layer,
resulting in a lower Ron/Roff ratio. The device with an HC
underlayer provided a relatively large Ron/Roff since a
conductive path was sufficiently formed in the switching
layer.
The synaptic potentiation and depression behaviors of

memristive devices are crucial factors for the imple-
mentation of high-performance neuromorphic com-
puting hardware. Synaptic potentiation and depression

were investigated by applying repetitive voltage pulses
and measuring the conductances of the memristive
devices. In Fig. 5a–d, the potentiation and depression
tests of devices with different conductances of LC, MC1,
HC, and MC2 were conducted. The pulse schemes in
potentiation and depression were 12 V and −8 V
amplitudes with the same pulse width of 10 μs,
respectively. Conductance updates were barely observed
for the LC device, as shown in Fig. 5a due to the
excessive current limitation that prevented the forma-
tion of sufficiently conductive filaments in the switching
layer. The devices with MC1 and MC2 conductances
had a large on/off conductance ratios compared to
devices with LC conductance and showed larger cycle-
to-cycle variations since the stable filament formation
was inhibited, as shown Fig. 5b, c. Finally, as shown in
Fig. 5d, the device with HC conductance exhibited a
larger on/off conductance ratio of (9.3) and reduced
cycle-to-cycle variations, as shown in Fig. 5d.
Additional synaptic potentiation and depression tests

were performed for the devices with HC conductance. As
shown in Fig. 6a, in potentiation, a 10 μs pulse with an
amplitude of 11 V was applied, and the conductance
readings at 1 V were repeated several times. Similarly, in
depression, a 10 μs pulse with an amplitude of −8 V was
applied, and a read pulse was 1 V. In Fig. 6(b), potentia-
tion and depression were repeated with 20, 50, 100, and
200 pulses. The on/off conductance ratio increased as the
number of pulses applied increased. Potentiation and

Fig. 4 Switching behaviors of the memristive devices with different Ge implantation fluences. a–d Confirmation of the current-voltage
characteristics for each conductance region by making devices with a Cu-based bilayer structure. The voltage was swept 100 times, following the
sequence: 0 V→+7 V→ 0 V→−7 V→ 0. e–h Cumulative probability values of Ron and Roff for the memristive devices with varying Ge implantation
fluences. All resistance values were measured at 1 V.
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depression nonlinearity were extracted using the follow-
ing equations47–49.

GP ¼ B 1� e�νPP
� �þ Gmin

GD ¼ Gmax � B 1� e�νDðP�PmaxÞ
h i

B ¼ Gmax � Gmin

1� eνPmax

where GP and GD are the conductance values at the times
of potentiation and depression, respectively; νP and νD are
the nonlinear values when the conductance is updated
during potentiation and depression, respectively; P and
Pmax are the number of pulses and the maximum number
of pulses, respectively; and Gmax and Gmin are the
maximum and minimum conductivities extracted from
the actual potentiation/depression test results.

Memristive neural network hardware requires optimal
synaptic devices for high-accuracy computing. The opti-
mal synaptic device needs to have low nonlinearity below

2.0, a high on/off ratio over 10, multi-conductance levels
over 25, and high symmetry11,12. The nonlinearity factor
of the Cu-based bilayer device in potentiation maintains a
value below 2.0 of 1.0, 2.0, 1.5, and 1.7 with increasing
pulse number from 20, 50, 100, to 200 times, respectively.
The nonlinearity values in the potentiation were similar to
the optimal values. However, in the case of depression,
relatively larger nonlinearity values of −3.8, −4.2, −4.3,
and −6.3 were extracted with increasing pulse number
from 20, 50, 100 to 200 times, respectively.
Multilayer perceptron (MLP) simulations based on the

Modified National Institute of Standards and Technology
(MNIST) database were performed with consideration of
the experimental synapse parameters. In the MLP simu-
lations, the Cu-based bilayer device with the HC con-
ductance was used as a synapse hardware model. . The
MNIST database simulation results with consideration of
the nonlinearity of the synaptic devices and the con-
ductance levels are presented in Fig. 6c. As shown in
Fig. 6c, the MLP neural network architectures were con-
structed with 28 × 28 input neurons, a hidden layer, and

Fig. 5 Synaptic weight potentiation and depression for the memristive devices with various Ge implantation fluences. a Synaptic weight
potentiation and depression of the memristive device without Ge implantation. b-d Synpatic weight potentiation and depression results for the
memristive devices with varying Ge ion implantation fluences from MC1, MC2 to HC. the least amount of ion injection. The write pulses were applied
100 times in potentiation and depression. The write pulse was applied at 12 V for 10 μs in potentiation and in depression was applied at −8 V for
10 μs. The read voltage was 1 V in both modes.
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10 output neurons. In each synapse weight update cal-
culation, the nonlinearity of the actual devices was con-
sidered. When the number of pulses increased during
potentiation and depression, the number of conductance
levels accordingly increased. Therefore, the operation
scheme with the increased number of pulses led to higher
precision in the synapse weight values. Therefore, a higher
recognition accuracy was expected with an increasing
number of pulses.
As expected, as the number of pulses increased from 50

to 200, the recognition accuracy increased from 73.9 to
87.2%. While assuming the synapse parameters at the
same values, we performed simulations with more pulses
up to 1000 times. Further increases in the pulse number
resulted in slight increases in the accuracy, as shown in
Fig. 6c. In this case, the accuracy was limited by the
nonlinearity rather than the number of conductance
levels. Therefore, further device engineering is needed for
higher performance.
Biological synapses are known to exhibit short-term

forgetting followed by long-term forgetting, which can be
suppressed by repetitive learning. Figure 7 shows the for-
getting curves of the CBRAM devices with varying num-
bers of pulses. Voltage pulses of 100ms with an amplitude

of 7 V were applied several times to a Cu-based bilayer
device, and the retention time of the device was measured
by reading the device conductance at a pulse with an
amplitude of 1 V at equal time intervals. The memory
decay behaviors resembled Ebbinghaus’s forgetting curve,
where short-term memory (STM) decay in an early stage
of the retention test was dominant, followed by long-term
memory (LTM) decay in a later stage50. As shown in
Fig. 7b, the maximum conductance value increased as the
number of pulses applied increased. This could be
understood from the correlation between the filament size
and the device retention time33. Filaments smaller than a
threshold size tended to shrink in the short term by sur-
face diffusion or bulk dissolution to reduce the surface
energy, while filaments with larger sizes remained for a
longer period of time, improving their retention time.
Further studies were performed to investigate the

operation mechanism of the Ge-implanted memristive
devices. Figure 8a, b shows the I–V characteristics, LRS
and HRS of the CBRAM devices with varying via-hole size
from 5 μm to 50 μm. The resistance was estimated from
the current measured at 1 V of the I–V curves. From
Fig. 8b, both the LRS and HRS resistances decreased with
increasing device via-hole diameter (D) following 1/Dn,

Fig. 6 Synaptic weight potentiation and depression for the HC device. a Graph of the potentiation and depression pulses applied to the HC
device. The voltages for the potentiation and depression pulses were applied at 11 V and −8 V, respectively, for 10 μs. b Conductance update with
varying pulse numbers of 20, 50, 100, and 200. c Learning accuracy of the hardware analog neuromorphic system based on the analog memristor.
The conductance numbers of the analog memristor were 20, 50, 100, and 200. The accuracy of the expected device is indicated by 500 and 1000
trials.
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Fig. 7 Retention characteristics for the HC device with varying pulses. a Conductance decay curves appearing after repeated voltage for the HC
device (11 V, 10 µs). The number of pulses applied was 50, 100, 200, 500 and 1000. A read pulse of 1 V was applied 2000 times. b Remaining
conductance after memory loss was extracted from each decay curve by comparing it with the initial conductance and expressed as a percentage
value. This value varied depending on the maximum conductance value in the corresponding decay curve.

Fig. 8 Multi-filamentary swithing behaviors of the memristive devices. a Current–voltage characteristics of the HC Cu-based bilayer device,
which vary with the via-hole size. b Via-hole size vs. resistance of the Cu-based bilayer device, where the resistance value was determined at 1 V.
c Schematic diagram and cross-sectional view of the device, obtained through XTEM photos. FFT images were extracted from high-resolution TEM
images to confirm that the shapes of the clusters were evenly distributed in the SiOx layer. d Morphologies in which the device in the set state
changes over time; STM and LTM refer to short time and long time, respectively.
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where the exponents of the LRS and HRS states were 2.2
and 2.6, respectively33. The cell-size dependency of the
device resistances with an exponent close to 2.0 supported
that the Ge implanted devices operated as an interface
type-like device. The XTEM images of the devices in the
set state showed multiple nanoclusters in the switching
layer, as observed in Fig. 8c. The nanoclusters were con-
firmed to be Cu from the lattice constants estimated from
the HR-TEM image and the FFT image. The size of the
Cu nanoclusters was uniformly distributed in the
switching layer, and the interparticle distances were
3.9 nm and 2.6 nm on average, respectively. The Cu
nanoclusters served as multiple conductive filaments or
multi-weak filaments in the CBRAM devices. From the
XTEM image, we could deduce the operation mechanism
of the Ge-implanted devices. The schematics in Fig. 8d
illustrate the formation of the multi-weak filaments. The
STM and LTM forgetting behaviors observed in Fig. 7
could also be understood from the illustrations. When a
positive voltage bias was applied to the Cu active elec-
trode, a multi-weak filament was formed. Once the multi-
weak filaments were formed and the applied bias was
removed, the elongated Cu nanoclusters could shrink to
be more spherical to reduce the surface energy. This
shape change resulted in conductance decay in STM
mode. In the later stage, the Cu nanoclusters became
more spherical and retained their shape in the LTM
mode. The abrupt switching was suppressed due to the
resistive a-SiGex underlayer inserted between SiOx and
c-Si limiting abrupt current overshooting by a voltage
dividing effect. The a-SiGe underlayer served as a current
limiting layer. The resistance of the current limiting layer
needed to be properly adjusted to obtain gradual
switching behavior. In the reset mode, the voltage bias
needed to be applied mainly to the switching layer, and in
the set mode, the voltage needed to be divided into the
switching layer and the current liming layer to suppress
current overshooting. For this, the resistance of the cur-
rent limiting layer was desirable to be in between the LRS
and the HRS of the memristive devices. Otherwise, the
current liming layer might not work properly. In this
work, the resistance of the a-Si current limiting layer was
modulated by implantation of the Ge ion, and gradual
switching behavior with the current limiting layer of the
HC conductance was successfully obtained. In addition to
the voltage diving effect, other factors, such as heat con-
finement and suppressed field concentration, could help
in multi-weak filament formations in the CBRAM devices
with the SiGe underlayer. More detailed discussions are
provided in the Supplementary information (Figs. S7, S8).

Conclusion
In this work, we proposed a novel scheme to implement

memristive devices exhibiting the analog behavior

required for neuromorphic computing hardware. A Cu
active electrode was selected based on the switching layer
and the type of active metal. To prevent the formation of
Cu silicide at the SiOx/c-Si interface, an a-Si underlayer
was inserted as a buffer layer. Through this scheme, the
device showed stable set and reset behaviors. In addition,
the abrupt formation of the conductive filaments during
the set switching operation was suppressed, resulting in
gradual resistive switching due to the current limiting
effect of the a-Si buffer layer. Analog characteristics were
optimized by tuning the conductance through Ge ion
implantation into the a-Si thin film. The formation of the
conductive filaments was greatly suppressed when the
resistance of the buffer layer was too large. Therefore, a
properly tuned a-SiGex thin film as a buffer layer was used
and provided a relatively large Ron/Roff ratio while main-
taining gradual switching. The analog synaptic char-
acteristics of the Cu-based bilayer devices were confirmed
by long-term potentiation and depression tests, and the
nonlinearity parameters in synaptic potentiation and
depression were extracted. MLP artificial neural network
simulations for MNIST recognition were performed with
consideration of the synapse nonlinearity of the memris-
tor devices. In the case of the devices without the a-SiGex
underlayer, unstable switching behavior derived from the
abrupt conductance change and Cu silicide formation was
observed. However, the memristor devices with the
a-SiGex underlayer exhibited gradual analog switching
and provided improved learning accuracy, especially with
an increasing number of conductance states, approaching
a value close to 90%.
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