ARTICLE Open Access

Reversible colossal barocaloric effect dominated by disordering of organic chains in $(CH_3-(CH_2)_{n-1}-NH_3)_2MnCl_4$ single crystals

Yihong Gao 61,2, Hongxiong Liu^{1,2}, Fengxia Hu 12,3, Hongyan Song^{1,2}, Hao Zhang^{1,2}, Jiazheng Hao¹, Xingzheng Liu^{1,2}, Zibing Yu^{1,2}, Feiran Shen¹, Yangxin Wang^{1,2}, Houbo Zhou^{1,2}, Bingjie Wang^{1,2}, Zhengying Tian^{1,2}, Yuan Lin^{1,2}, Cheng Zhang 12, Zhuo Yin^{1,2}, Jing Wang 12,4, Yunzhong Chen 12,4, Yunliang Li 12,3, Youting Song¹, Youguo Shi^{1,2,3}, Tongyun Zhao^{1,5}, Jirong Sun^{1,2,3}, Qingzhen Huang⁶ and Baogen Shen 12,3,7

Abstract

Solid-state refrigeration based on the caloric effect is viewed as a promising efficient and clean refrigeration technology. Barocaloric materials were developed rapidly but have since encountered a general obstacle: the prominent caloric effect cannot be utilized reversibly under moderate pressure. Here, we report a mechanism of an emergent large, reversible barocaloric effect (BCE) under low pressure in the hybrid organic–inorganic layered perovskite $(CH_3-(CH_2)_{n-1}-NH_3)_2MnCl_4$ (n=9,10), which show the reversible barocaloric entropy change as high as $\Delta S_r \sim 218, 230 \text{ J kg}^{-1} \text{ K}^{-1}$ at 0.08 GPa around the transition temperature ($T_s \sim 294, 311.5 \text{ K}$). To reveal the mechanism, single-crystal $(CH_3-(CH_2)_{n-1}-NH_3)_2MnCl_4$ (n=10) was successfully synthesized, and high-resolution single-crystal X-ray diffraction (SC-XRD) was carried out. Then, the underlying mechanism was determined by combining infrared (IR) spectroscopy and density function theory (DFT) calculations. The colossal reversible BCE and the very small hysteresis of 2.6 K (0.1 K/min) and 4.0 K (1 K/min) are closely related to the specific hybrid organic–inorganic structure and single-crystal nature. The drastic transformation of organic chains confined to the metallic frame from ordered rigidity to disordered flexibility is responsible for the large phase-transition entropy comparable to the melting entropy of organic chains. This study provides new insights into the design of novel barocaloric materials by utilizing the advantages of specific organic–inorganic hybrid characteristics.

Introduction

Refrigeration technology based on volatile hydrofluorocarbon fluids gives rise to the destruction of the ozone layer and the greenhouse effect; thus, researchers have been exploring efficient and environmentally friendly alternative refrigeration materials. Ferroic materials, which exhibit a field-driven caloric effect near the ferroic transition, show the potential capacity to replace current refrigerants. Materials with an order-disorder transformation of magnetism can be driven by a magnetic field to induce magnetocaloric effects (MCEs). Analogously, the electrocaloric effects (ECE), elastocaloric effects (eCE) and barocaloric effects (BCE) can be induced in relevant materials by imposing an electric field, uniaxial stress and hydrostatic pressure, respectively¹. Among these caloric effects, the barocaloric effect (BCE), as the last to be introduced, has evolved rapidly because it can be achieved universally in materials with volume-changed structural phase transitions. Well-known ferromagnetic and ferroelectric materials, such as $Gd_5Si_2Ge_2$, Mn_3GaN , $Fe_{49}Rh_{51}$,

Correspondence: Fengxia Hu (fxhu@iphy.ac.cn) or Jing Wang (wangjing@iphy.ac.cn) or Yunliang Li (yunliangli@iphy.ac.cn) or Baogen Shen (shenbg@iphy.ac.cn)

Full list of author information is available at the end of the article These authors contributed equally: Yihong Gao, Hongxiong Liu

© The Author(s) 2022

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

¹Beijing National Laboratory for Condensed Matter physics, Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, P. R. China

²School of Physical Sciences, University of Chinese Academy of Sciences, 101408 Beijing, China

BaTiO₃, and (NH₄)₂SO₄, also show considerable barocaloric effects in addition to MCEs or ECEs, where ferroic phase transitions are coupled with crystal deformation ^{1–8}. In addition, barocaloric effects have been reported in multiple materials where phase transitions are solely accompanied by structural change, which means dilation and/or shear 9-14. Among the abundant barocaloric materials^{9,11,12,14–20}, some gratifyingly exhibit great barocaloric effects with isothermal entropy changes exceeding 100 J kg⁻¹ K⁻¹, such as the fast ion conductor CaF₂¹⁴, polyvinylidene di-fluoride-based polymers¹⁸, Fe₃(bntrz)₆(tcnset)₆ with spin-crossover²⁰, and 1-Cl/Br-ada¹⁹, originating from a melting-like freedom inflation of the sublattice, a reorientation of the polymeric chains with α - β phase transition, a switch between low and high spin states, and strong molecular orientational disorder, respectively. More attractively, the substantial BCE was discovered in various plastic crystals^{12,13}, which appear to be a milestone of BCE field. Plastic crystals NPG ((CH₃)₂C(CH₂OH)₂), PG ((CH₃) C(CH₂OH)₃), TRIS ((NH₂)C(CH₂OH)₃), and AMP ((NH₂) (CH₃)C(CH₂OH)₂) exhibit barocaloric entropy changes (ΔS_p) as high as 530 J kg $^{-1}$ K $^{-1}$ (0.57 GPa), 510 J kg $^{-1}$ K $^{-1}$ (0.25 GPa), 600 J kg $^{-1}$ K $^{-1}$ (0.25 GPa), and 690 J kg $^{-1}$ K $^{-1}$ (0.25 GPa), respectively 13,17, and the origin is closely related to the changes in the intermolecular hydrogen bonds and the orientational disorder across the phase transition ^{12,16}.

The discovery of highly barocaloric materials has largely promoted solid-state barocaloric refrigeration techniques, and related theoretical models have been developed to simulate refrigeration processes^{21,22}. However, only the reversible variables of the BCE (specifically, the reversible entropy change (ΔS_r) and adiabatic temperature change (ΔT_r) can work for cooling during the pressurization and depressurization cycles. High latent heat is usually accompanied by a large hysteresis gap, which prevents the substantial BCE from being utilized at low pressures. For instance, plastic crystal NPG cannot produce useful BCE ($\Delta S_r = 0$) under 0.1 GPa in the refrigeration cycle owing to the ~14 K hysteresis¹², although its $\Delta S_{\rm p}$ is as high as ~530 J kg⁻¹ K⁻¹ (0.57 GPa)¹³. Hence, exploring the reversible, substantial BCE driven by low pressure remains a high challenge.

Organic–inorganic perovskite hybrids are usually designed to generate targeted structures and properties by combining the desirable properties of inorganic materials (high electrical mobility, wide band gaps, thermal hardness) and organic compounds (highly efficient luminescence, high polarizability)²³. For layered perovskite systems, larger and more complex organic cations can be accommodated to generate stable structures and hence functional properties, while organic cations in 3D perovskite systems are dimensionally required to fit into cubic perovskite structures, such as the methylammonium in MAPbI₃. By incorporating long-chain

alkylammonium, organic-inorganic layered perovskites $(CH_3-(CH_2)_{n-1}-NH_3)_2MnCl_4$ were demonstrated to exhibit various functional properties, including thermal energy storage²⁴. Very recently, Li et al. reported a reversible, substantial BCE in $(CH_3-(CH_2)_9-NH_3)_2MnCl_4$ (n=10) polycrystalline powder²⁵, where the reversible barocaloric entropy change reaches $\Delta S_r \sim 250 \,\mathrm{J\,kg^{-1}\,K^{-1}}$ at a pressure of 0.1 GPa. Although powder X-ray diffraction (PXRD) and Raman scattering were performed, the exact structural information, particularly of the high-temperature phase, and the critical role of each component, including the NH3 head, CH₂ and C-C chains, and CH₃ tails in the entire (CH₃- $(CH_2)_{n-1}$ – NH_3) + chain, remain unclear due to the complex organic-inorganic hybrid structure and the polycrystalline nature of the samples²⁵. In this article, we prepared $(CH_3 (CH_2)_{n-1}$ -NH₃)₂MnCl₄ (n = 9,10) materials and successfully cultivated high-quality single crystals for n = 10. Then, the mechanism of the reversible, substantial BCE under low pressure was determined from high-resolution single-crystal X-ray diffraction (SC-XRD), infrared (IR) spectroscopy measurements, and density function theory (DFT) calculations. It was found that the $(CH_3-(CH_2)_{n-1}-NH_3)_2MnCl_4$ (n = 10) single crystals show latent heat entropy change as high as $\Delta S \sim 230 \,\mathrm{J\,kg^{-1}\,K^{-1}}$ across the phase transition $(T_{\rm s} \sim 311.5 \, {\rm K})$ upon heating, while thermal hysteresis as low as 2.6 K (0.1 K min⁻¹) and 4.0 K (1 K min⁻¹) was measured by differential scanning calorimetry (DSC). Accordingly, the barocaloric $\Delta S_{\rm p}$ obtained by the quasi-direct method ¹⁷ reached a maximum under a low pressure of 0.04 GPa due to the extreme sensitivity of the phase transition to pressure, and the reversible entropy change (ΔS_r) after deducting irreversible part reaches the maximum under 0.08 GPa, i.e. $\Delta S_{\rm r} \sim 230 \,\mathrm{J\,kg^{-1}\,K^{-1}}$. $(\mathrm{CH_3-(CH_2)_{n-1}-NH_3)_2MnCl_4}$ (n=9)failed to grow a sufficient single crystal, and the corresponding thermal hysteresis was measured as 5.2 K (1 K min⁻¹), while $\Delta S_r \sim 212 \,\mathrm{J\,kg^{-1}\,K^{-1}}$ at 0.08 GPa. The reversible barocaloric performance of the both compositions are ahead of reported other barocaloric materials.

Materials and methods

Sample preparations

(CH₃–(CH₂)_{n-1}–NH₃)₂MnCl₄ (n=9,10) single crystals are difficult to fabricate. To cultivate single crystals with high quality and suitable size, nucleation and crystal growth must occur slowly. Here, the preparation process was as follows. (CH₃–(CH₂)_{n-1}–NH₃)₂MnCl₄ (n=9,10) was synthesized by a reaction in anhydrous ethyl alcohol. The n-nonylamine (C₉H₁₉NH₂) for n=9 or n-decylamine (C₁₀H₂₁NH₂) for n=10, hydrochloric acid (mass fraction of 0.37), and manganese dichloride tetrahydrate (MnCl₂·4H₂O) were weighed at a molar ratio of 2:2:1, and then added into the ethyl alcohol, the hydrochloric acid being added drop by drop. The mixture was heated and stirred under reflux for 6 h and then a precipitate appeared on slowly cooling.

During purification, the product was recrystallized at least three times with anhydrous ethyl alcohol. Then, after filtering and slow evaporation for one week without any motion and interference, a high-quality single crystal of $(CH_3-(CH_2)_{n-1}-NH_3)_2MnCl_4$ (n=10) was successfully obtained but no qualified single crystal was obtained for the n = 9 material, despite much effort was dedicated. The reason for the difference in crystallization is probably the odd-even effect. Finally, the samples were placed in a vacuum desiccator at approximately $300\,\mathrm{K}$ to dry for $12\,\mathrm{h}$ and then preserved in a desiccator 26,27. Although the resulting product for n = 9 was similar in appearance to the n = 10 single crystal, as both were pale pink fragments, we were unable to obtain regular diffraction information via SC-XRD (see Supplementary Information SI-1); the compared diffraction images of the n = 10 single crystal and n =9 sample are shown in Fig. S1. From the diffraction image, the n = 9 sample is not a good single crystal, although a partial stacking order was formed during the cultivation process, the structure of which was unable to be resolved via SC-XRD as done for the n = 10 single crystal.

Characterization

High-resolution SC-XRD at variable temperatures was performed on a BRUKER D8 VENTURE with $\lambda = 0.71073$ Å. The datasets of the $(CH_3-(CH_2)_{n-1}-NH_3)_2MnCl_4$ (n=10)were collected on heating at three temperatures, 298 K, 308 K, and 320 K, separately, below and above the transition temperature $T_s = 311.5 \text{ K}$. Only structural information at 298 K and 320 K will be discussed below, and other information is available in Supplementary Information SI-2. The data were corrected for absorption effects using the Multi-Scan method (SADABS). The structure was solved and refined using the Bruker SHELXTL Software Package. Relevant parameters about data collection and structure refinement are listed in Table S1, Table S2, and Table S3. Infrared (IR) spectroscopy was performed using a BRUKER TENSOR II Fourier transform infrared (FTIR) spectrometer in the frequency range of 900–4000 cm⁻¹ with 1.5 cm⁻¹ resolution. To characterize the barocaloric effect, heat flow under pressure was measured by a high-pressure differential scanning calorimeter (DSC) with a µDSC7 evo microcalorimeter (SETARAM, France). Specifically, the pressure of 0–0.1 GPa is applied by compressed N₂ gas with high purity (99.999%).

Density functional theory (DFT) calculations

The quantum mechanical calculations for the $(CH_3-(CH_2)_{n-1}-NH_3)_2MnCl_4$ (n=10) single crystal were performed using the Gaussian09 software package based on density functional theory (DFT). The B3LYP function with the 6-311 G^* basis set was applied to optimize the molecular structure and to calculate the IR vibrational frequencies. The polarization function can better optimize

the structure and frequency accuracy. The frequency correction factor is 0.97305. The energy convergence criterion is set at $10^{-6}\,\mathrm{eV}$ throughout the calculations. The molecular optimization model at 298 K is based on atomic positions obtained from SC-XRD, where during the optimization process, the organic chain changes slightly under the energy convergence criterion but remains rigid.

Results and discussion

The prepared $(CH_3-(CH_2)_{n-1}-NH_3)_2MnCl_4$ (n=10) single crystals appear as pale pink fragments, and the picture under the optical microscope is shown on the lower left of Fig. 1a. The heat flow at 1 bar (atmosphere pressure) with a heating and cooling rate of 0.1 K min⁻¹ is shown on the upper right of Fig. 1a. A sharp first-order phase transition occurs near the transition temperature $T_s \sim 311.5$ K (peak position upon heating) with a large entropy change of approximately $230\,\mathrm{J\,kg^{-1}\,K^{-1}}$. However, the thermal hysteresis is as small as 2.6 K defined as the distance between the maximums of the exothermal and endothermal peaks, and it is 1.5 K defined as the distance between the onsets of peaks, remarkably smaller than that of almost all other BCE materials, including plastic crystals. Hence, a large reversible BCE is expected.

To determine the mechanism of the high latent heat during the phase transition, high-resolution SC-XRD was performed at various temperatures to reveal the structural information on both sides of the phase transition, and the results are given in Fig. 1b-i (the parameters for data collection and structural refinement are shown in Tables S1-3). The careful refinements revealed that in the low-temperature phase at 298 K, (CH₃-(CH₂)₉-NH₃) 2MnCl₄ has a monoclinic layered perovskite structure with space group P2₁/c and lattice parameters $a = 26.7 \text{ Å}, b = 7.3 \text{ Å}, c = 7.2 \text{ Å}, \alpha = \gamma = 90^{\circ}, \beta = 94.6^{\circ}; \text{ the}$ unit cell is framed in black in Fig. 1b, c. Each unit cell contains two MnCl₆ octahedrons and four organic chains. The layers are connected via van der Waals interactions through the methyl group at each tail of an organic chain, as shown in Fig. 1b for two adjacent layers. Each layer has a sandwich-like organic-inorganic-organic structure with a MnCl₄²⁻ inorganic framework connecting tightly to the $(CH_3-(CH_2)_9-NH_3)^+$ organic chains on both sides. In the MnCl₄²⁻ inorganic framework, the octahedron MnCl₆ coordinate is two-dimensionally extended by ioniccovalent interactions in the bc plane, while the (CH₃-(CH₂)₉-NH₃)⁺ organic chains on both sides remain in parallel at an angle of 45° with the Mn atom column when viewed along the b axis (Fig. 1b). The inorganic framework is connected to the organic moieties through the NH₃ heads, which interact with the chlorine atoms of the MnCl₄²⁻ framework via hydrogen bonds (N-H...Cl), and each $(CH_3-(CH_2)_9-NH_3)^+$ chain contains one NH_3 head,

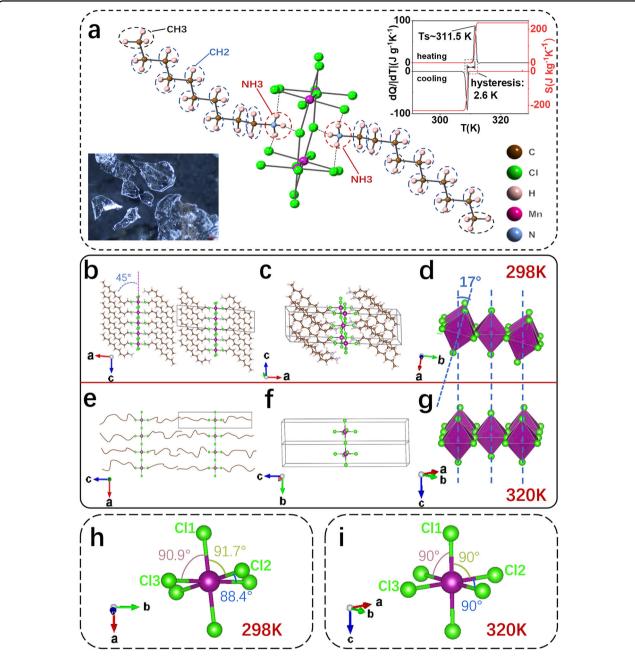


Fig. 1 Crystal structure information of $(CH_3-(CH_2)_{n-1}-NH_3)_2MnCl_4$ (n=10) from single-crystal X-ray diffraction. a Molecular structure diagram of $(CH_3-(CH_2)_{n-1}-NH_3)_2MnCl_4$ (n=10) at 298 K, where the $(CH_3-(CH_2)_{n-1}-NH_3)^+$ organic chains connect to the $MnCl_4$ framework via NH... CI hydrogen bonds. The morphology of the crystal (determined by optical microscopy) is shown in the lower left corner, as in the upper right corner are the DSC results at atmospheric pressure with heating and cooling rates of 0.1 K min⁻¹. At 298 K, **b** the organic–inorganic–organic layer structure viewed along the b axis, **c** monoclinic lattice and molecular arrangement, and (**d**) distorted arrangement of the $MnCl_6$ octahedra. At 320 K, **e** the structure with disordered organic chains, **f** the tetragonal lattice, and (**g**) the regular arrangement of $MnCl_6$ octahedra. **h** and **i** comparably show the $MnCl_6$ coordination at 298 K and 320 K.

nine methylene (CH_2), and one methyl (CH_3) tail in sequence (Fig. 1a). Due to the tight bonding of organic moieties with the inorganic frame, the alignments of the inorganic $MnCl_6$ octahedra twist in the low-temperature phase (see Fig. 1d); the details of the distortion angles

refined from SC-XRD are shown in Table S4. The adjacent octahedrons at 298 K show an apparent stagger angle of 17°, which differs from that of the high-temperature phase at 320 K (Fig. 1g). The distinct difference between the staggered and regular extensions of the $MnCl_6$

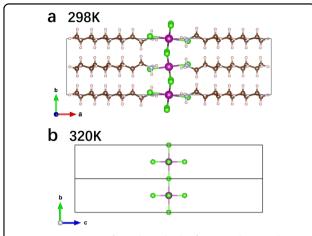
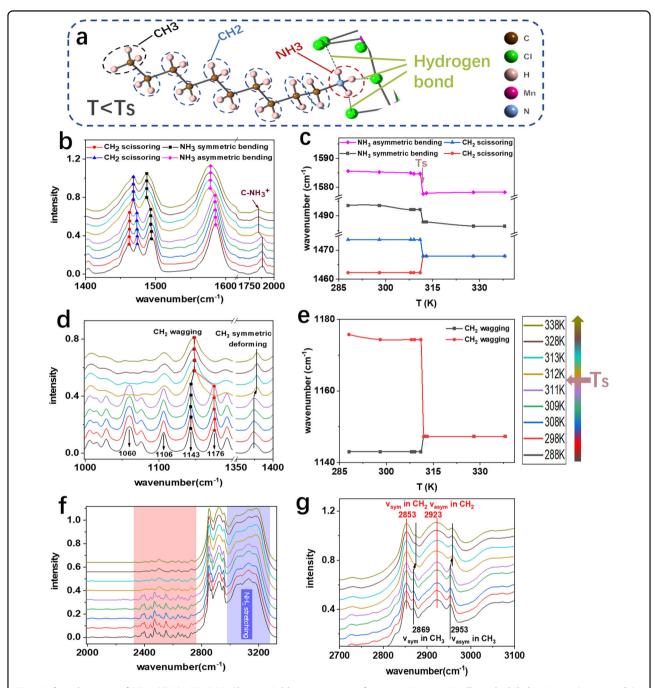


Fig. 2 Arrangement of MnCl octahedra from single-crystal X-ray diffraction. $\bf a$ and $\bf b$ comparatively show the extension of MnCl₆ octahedra along the $\bf b$ axis at 298 K and 320 K, respectively.

octahedra along the b axis at 298 K and 320 K is shown in Fig. 2a, b. Moreover, the octahedral coordination of MnCl₆ at 298 K is noticeably deformed, with angles of 91.7° for Cl1–Mn–Cl2, 90.9° for Cl1–Mn–Cl3, and 88.4° for Cl2–Mn–Cl3 (Fig. 1h), while all those in the high-temperature phase at 320 K are 90° (Fig. 1i). More detailed structural diagrams of $(CH_3-(CH_2)_9-NH_3)_2MnCl_4$ are shown in Fig. S5–13.


At 320 K (the high-temperature phase above T_s), (CH₃– (CH₂)₉-NH₃)₂MnCl₄ transforms to a tetragonal structure with space group P4/mmm and parameters a = b = 5.2 Å, c = 28.3 Å, and $\alpha = \beta = \gamma = 90^{\circ}$; the unit cell is framed in black (Fig. 1e, f). One unit cell contains one MnCl₆ octahedron and two $(CH_3-(CH_2)_9-NH_3)^+$ chains due to the change in symmetry of the space group. More differently, only a fourfold symmetric MnCl₄²⁻ inorganic framework can be detected, while the organic chains become unobservable under X-ray excitation. The lack of diffraction information from the organic moieties indicates the broken spatial translation symmetry, strongly implying that the organic moieties have become highly disordered in the high-temperature phase; the irregular organic chains are schematically drawn in brown and shown in Fig. 1e. The MnCl₆ coordination octahedra at 320 K become completely parallel and exhibit translation invariance, while the angles of the Cl1-Mn-Cl2, Cl1-Mn-Cl3, and Cl2-Mn-Cl3 bonds are all 90°. The decrease in torsion of the MnCl₆ octahedron arrangement strongly suggests remarkable weakening or even breaking of the hydrogen bonds between the organic cations and inorganic anions, further supporting the disordering of organic chains at the high-temperature phase.

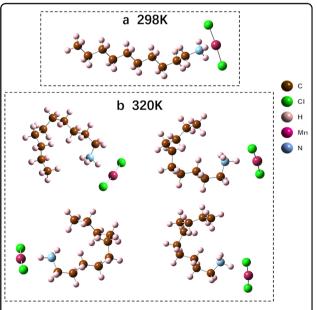
To obtain details about the change in the organic $(CH_3-(CH_2)_9-NH_3)^+$ chains (Fig. 3a) from ordering to

disordering and understand the large entropy change across the phase transition $T_{\rm s}$, we performed IR spectroscopy in the frequency range of 900–4000 cm⁻¹ with a 1.5 cm⁻¹ resolution at variable temperatures from 288 K to 338 K upon heating. As shown in Fig. 3b–g, specific vibration bands were selected to illustrate the change in intrachain motion before and after transition; these vibration bands provide information on all the NH₃, CH₂, CH₃ groups and C–C chains from head to tail throughout the organic moieties. The assignments of the bands are listed in Table S7, and the complete infrared spectra are shown in Fig. S14.

As shown in Fig. 3b, the vibration bands near 1490 cm⁻¹ (trajectory displayed with black line) and 1580 cm⁻¹ (trajectory displayed with purple line) are assigned to the symmetric and asymmetric bending vibrations of the NH₃ head, respectively. The sharp redshift across T_s upon heating (Fig. 3b, c) indicates that the NH₃ bending frequency suddenly decreases as the order state collapses, which illustrates the weakening of hydrogen bonds of NH₃²⁸, i.e. the N-H...Cl connections between the organic chains and the inorganic framework, at the disorder state above T_s , in line with the torsion disappearance of MnCl₆ octahedron revealed by SC-XRD. On the left side close to the NH₃ symmetric bending band, two bands at 1462 cm⁻¹ and 1474 cm⁻¹ corresponding to the CH₂ scissoring vibration (the body of organic moieties, Fig. 3a) can be identified at the ordered state below T_s . These bands suddenly merge into a single band as the ordered state collapses at T_s (Fig. 3b, c). The presence of the two bands (correlation splitting) of the CH₂ scissoring modes at the order phase is caused by C-C chain and interchain interactions in between. The CH₂ vibration modes often split into two components due to interchain interactions in closely packed alkyl chain systems where more than one chain is present per unit cell²⁹. The collapse of the two bands into a single band suggests the weakening or even disappearance of the CH₂ interchain interactions at the disorder phase above T_s . Furthermore, as shown in Fig. 3d, e, similar to CH₂ bending, the splitting of CH_2 wagging vibration below T_S also merges into a single band as soon as the ordered state collapses, further illustrating the sudden weakening or disappearance of the CH2 interchain interactions at the disorder high-temperature phase.

For the ${\rm CH_3}$ tails of the organic chains, the peaks at 2869 and 2953 cm⁻¹ represent the symmetric and asymmetric C–H stretching vibration of CH₃, respectively (Fig. 3g, black lines), while the peak at 1375 cm⁻¹ corresponds to its symmetric deforming mode³⁰ (Fig. 3d). All three undergo a sudden blueshift as soon as the ordered state collapses at $T_{\rm s}$. The increase in frequency of the CH₃ stretching and deforming vibrations implies that the CH₃ tails of organic chains become less restricted and freer, which strongly

Fig. 3 Infrared spectra of (CH₃–(CH₂)₉–NH₃)₂MnCl₄ at variable temperatures from 288 K to 338 K collected while heating. a Structure of the unilateral organic chain and the conterminous part of the inorganic framework part. **b** Infrared spectra in the region of $1400-2000 \, \text{cm}^{-1}$ involving CH₂ scissoring and NH₃ bending vibrations and the C–NH₃⁺ band, and (**c**) the corresponding band frequencies vs. temperature. **d** Infrared spectra in the region of $1000-1400 \, \text{cm}^{-1}$ containing the CH₂ wagging and CH₃ symmetric deforming vibrations, and (**e**) the corresponding CH₂ wagging band frequencies vs. temperature. **f** Infrared spectra in the region of $2000-3300 \, \text{cm}^{-1}$, showing the bands of the C–H stretching vibration ($2800-3000 \, \text{cm}^{-1}$) and NH₃ stretching vibrations (purple zone). **g** Infrared spectra concerning C–H stretching vibrations of CH₂ and CH₃ with a magnified view of the corresponding area shown in (**f**).


suggests the weakened interlayer van der Waals interactions between the two adjacent layers (Fig. 1b) in the disordered state of the high-temperature phase. Moreover, the symmetric and asymmetric C–H stretching vibrations of the CH_2 group arising at 2853 and 2923 cm⁻¹ (Fig. 3g, red lines), respectively³¹, are both more intense than those of the CH₃ group, which is understandable considering the higher ratio of $\text{CH}_2/\text{CH}_3 = 9/1$ in a single $(\text{CH}_3-(\text{CH}_2)_9-\text{NH}_3)^+$ chain.

Moreover, the IR spectra reveal information regarding the C-C...-C-N skeleton of the organic chains, which become flexible across the order-disorder phase transition. In Fig. 3d, except for the CH₂ wagging vibration and CH₃ symmetric deforming bands, other multiple bands from 1000 to 1300 cm⁻¹ mainly stem from the skeletal vibrations that occur in the carbon chain, specifically the C-C stretching and bending vibrations. With the occurrence of a phase transition from an ordered to disordered state, the bands broaden and weaken, indicating the rigidity-flexibility transition of C-C chains. This result indicates that the carbon bonds weaken, and various conformers may appear, leading to wider bands in the disordered phase. Moreover, the broad band near $1880 \,\mathrm{cm}^{-1}$ corresponds to the presence of C-NH₃⁺³⁰, (Fig. 3b) and its sudden redshift at T_s indicates the weakened bonding energy of C-N as the organic chains undergo a rigidity-flexibility change across the T_s . Figure 3f shows the bands of C-H and N-H stretching vibrations. In the 3000-3200 cm⁻¹ region of the N-H stretching vibration of the NH₃ group (the purple zone), the bands broaden across the order-disorder phase transition. It can be surmised that the various conformations of the C–C chain cause the various stretching vibrations of the NH₃ head; thus, more vibration modes may appear, and their superposition leads to broader bands in the disordered state. In the range of 2300–2800 cm⁻¹ (the pink area in Fig. 3f), multiple unidentified bands broaden and weaken above T_s , which also reflects the rigidity-flexibility transition of the organic chains analogous to the C-C skeleton vibration within the 1000–1300 cm⁻¹ range.

Li et al. investigated the disordering process in (CH₃- $(CH_2)_{n-1}$ -NH₃)₂MnCl₄ (n = 10) by Raman scattering²⁵, which mainly analyzes the conformational disordering of C-C organic chains. The 1065, 1109, 1146, and 1174 cm⁻¹ bands in the range of 1000-1200 cm⁻¹ were assigned to the trans-conformation of C-C skeleton vibrations in the Raman spectra, which all disappeared in the hightemperature phase, suggesting that the conformation of long trans planar chains changed across the T_s^{25} . Evidence of gauche bond appearance was speculated in the decrease of $1465\,\mathrm{cm}^{-1}$ shoulder, which corresponds to intramolecular coupling of trans structures. Additionally, Raman spectra collected in the low-frequency region provided more information on conformational disordering of C–C chains²⁵. The 235 cm⁻¹ band corresponding to the accordion-like longitudinal acoustic mode (LAM) disappeared, and only a broad, weak band was observed near 247 cm⁻¹ at hightemperature phase, which also means that the conformation of the long trans planar chains changed²⁵. The conformation change from trans planar chains to gauche bond structure reflects the deforming/twisting of organic C-C chains during the disordering process. Our IR spectrometer works in middle wavenumber region. Analogous to the Raman spectra, the corresponding trans bands possibly arise at approximately 1060, 1106, 1143, and 1176 cm $^{-1}$ (Fig. 3d). The peak at $1060\,\mathrm{cm}^{-1}$ disappears and the peak at $1106\,\mathrm{cm}^{-1}$ becomes weak in the high-temperature phase, in line with the Raman results, while the last two overlap with the CH₂ wagging bands.

In summary, the drastic transformation from ordered rigidity to disordered flexibility in the organic chains rationalizes the aforementioned absence of diffraction information for the organic moieties by SC-XRD and rationalizes the substantial phase-transition entropy comparable to the melting entropy of organic chains.

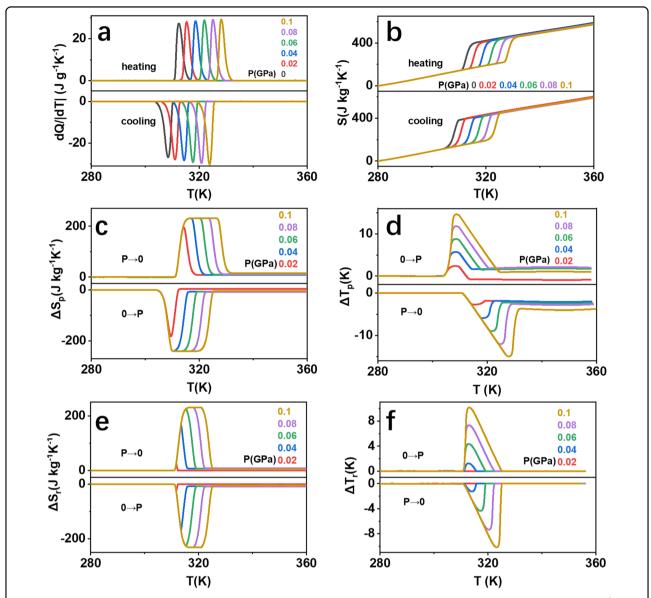
To clarify the conformation of the organic moiety at the high-temperature state, DFT (density function theory) calculations were performed to speculate the possible conformational change with the phase transition. The atomic positions of the $(CH_3-(CH_2)_9-NH_3)^+$ organic chain at 298 K obtained from SC-XRD were added, and the calculated model is shown in Fig. 4a. Then impose the dihedral of adjacent C-C bonds varying on the structural model at 298 K, and the computational results suggest an optimization model of molecule for high-temperature state at 320 K as seen in Fig. 3b, exhibiting flexible conformation. The DFT calculations show that at the hightemperature state, the carbon chains get twisted possessing changed C-C bond angles and lengths in comparison with the rigid trans-conformation at the low-temperature phase. The simulated IR spectra of the two models for

Fig. 4 Conformation of organic chain from density functional theory (DFT) calculation of infrared spectra. Organic chain at 298 K (a) and 320 K (b) where four images viewed from different perspectives are given.

Table 1 For specific vibrational modes, the comparison of experimental IR results and theoretical results calculated by DFT.

Vibration mode	Wavenumber (cm ⁻¹)						
	298 K exp.	320 K exp.	298 K calc.	320 K calc.			
CH ₂ scissoring	1462, 1473	1467	1488, 1496	1496			
NH ₃ asymmetric bending	1584	1577	1577	1562			
C-NH ₃ ⁺	1881	1837	1875	1871			
CH ₃ symmetric deforming	1373	1378	1378	1389			
CH ₃ asymmetric stretching	2953	2957	2932	2944			

specific vibration modes are comparatively given with the experimental results in Table 1. The calculated behaviors across the phase transition are roughly consistent with those obtained from experimental measurements, which verifies the rationality of the possible conformation of organic chains at 320 K, as shown in Fig. 4b.


Concretely, for the NH₃ group at the head of organic chain, the DFT calculation indicates that the vibration modes of NH₃ asymmetric bending and C-NH₃⁺ bands both get redshifted across the order-disorder phase transition in analogy to the experimental results (Fig. 3b). Therefore, the vibrational variation of the NH₃ group is verified to be relevant to weakened N-H...Cl hydrogen bonds and softened C-C...-C-N chain skeleton. For the body of the organic chain, the calculated double bands of CH₂ scissoring vibration at low-temperature phase collapse to a single one at high-temperature phase, consistent with the experimental measurements (Fig. 3b), and for the CH₃ group at the tail of the organic chain, the calculated symmetric deforming and asymmetric stretching vibrations both get blueshift on heating across $T_{\rm s}$, also consistent with experimental measurements (Fig. 3d, g). The calculations demonstrated that, as for the vibration modes of CH2 and CH₃ groups, their change with phase transition is closely relevant to the bended and softened chain conformation at high-temperature phase, which actually point to the weakening of the interchain interaction and the interlayer van der Waals interaction above T_s .

In summary, by utilizing DFT computation, a reasonable conformation of the organic chain in the high-temperature phase is visualized with a twisted and softened C–C chain skeleton. The calculated results vividly illustrate the changes in the organic chain across the $T_{\rm s}$, which is also an aspirational need of Raman research about the change of conformational ordering of C–C chains²⁵.

An early study³² also investigated the dynamic process involving the order-disorder transition by combining an incoherent neutron scattering (INS) experiment with theoretical simulations for $(CH_3-(CH_2)_9-NH_3)^+$ decvlammonium chains in a polycrystalline sample (CH₃-(CH₂)₉-NH₃)₂MnCl₄. It was concluded that, in the hightemperature phase, the chains can adopt a stabilized 'kink' conformer (t4gtg't, where t indicates a trans bond and g indicates a gauche bond in organic chains) and move fastly related to both conformational interconversions and cooperative torsions along the main chain axis. When the temperature continuously rises above the transition, the degree of conformational disorder and cooperative torsion drastically increase. That is, different temperatures may correspond to different levels of conformational disorder. The 'kink' conformer (t4gtg't) shows some differences from our results calculated by DFT. In addition to the temperature, the different experimental methodologies and theoretical models may also cause some differences due to the complexity of organic-based molecules.

The intrinsic thermally induced entropy change of barocaloric materials that occurs under atmospheric pressure usually plays a dominant role in determining the upper limit of entropy change induced by finite pressure. In some cases, the contributions beyond the transition cannot be ignored¹³. The large entropy change of approximately 230 J kg⁻¹ K⁻¹ demonstrates the great potential for a large BCE in $(CH_3-(CH_2)_{n-1}-NH_3)_2MnCl_4$ (n=10). A phase transition with large latent heat generally exhibits large hysteresis due to the high energy barrier of the phase transition. Unusually, the $(CH_3-(CH_2)_{n-1}-NH_3)_2MnCl_4$ (n=10) single crystal was measured to have very small hysteresis of 2.6 K at a temperature ramping rate of 0.1 K min⁻¹ (upper inset of Fig. 1a) and 4.0 K at 1 K min⁻¹ (Fig. 5a), originating from the single-crystal nature lacking effect from the grain boundary, as well as the specific hybrid organic-inorganic structure, which greatly facilitates achieving large reversible BCE. For $(CH_3-(CH_2)_{n-1}-NH_3)_2MnCl_4$ (n=9), which failed to grow a high-quality single crystals, the measured entropy change across $T_{\rm s} \sim 294\,{\rm K}$ by DSC was approximately 212 J kg⁻¹ K⁻¹, while the thermal hysteresis was 5.2 K at a ramping rate of 1 K min⁻¹ (Figs. S15–17).

To verify the large BCE and its reversibility in $(CH_3-(CH_2)_{n-1}-NH_3)_2MnCl_4$ (n=9, 10), we performed heat flow measurements by high-pressure DSC and used a quasi-direct method to evaluate the BCE^{1,33}, as shown in Fig. 5 and Figs. S16–22. From the heat flow curves shown in Fig. 5a and Fig. S16, we determined the temperature-dependent entropy with the specific heat capacity (C_p) considered and not, as shown in Fig. 5b and Fig. S23 for the $(CH_3-(CH_2)_{n-1}-NH_3)_2MnCl_4$ (n=10) single crystal and Figs. S18 and Fig. S17 for the $(CH_3-(CH_2)_{n-1}-NH_3)_2MnCl_4$ (n=9) sample. The measured C_p is

Fig. 5 Barocaloric performance of (CH₃-(CH₂)₉-NH₃)₂ MnCl₄ single crystal. a Heat flow measured at a rate of temperature of 1 K min⁻¹ under selected pressures and (**b**) the resultant entropy–temperature curves that take into account the specific heat. **c** Isothermal entropy change ΔS_p induced by pressurization (downside) and depressurization (upside), given by the isothermal subtraction of the entropy curves in (**b**). **d** Adiabatic temperature change ΔT_p induced by pressurization (downside) and depressurization (upside), given by isentropic subtraction of entropy curves in (**b**). The atmospheric pressure/*P* is considered the initial value for the compression/decompression process during subtraction. **e** Reversible isothermal entropy change ΔS_r obtained by overlapping pressurization-induced and depressurization-induced isothermal entropy change curves in (**c**). **f** Reversible adiabatic temperature change ΔT_r obtained excluding the influence of thermal hysteresis^{10,19}.

provided in Fig. S24 and Fig. S25 for the n=10 and n=9 materials, respectively. One can find that the $T_{\rm s}$ was extremely pressure-sensitive and had a driving speed as high as ~150 and ~172 K GPa⁻¹ when n=10 and n=9, respectively (Table 2). By subtracting the variable-pressure entropy–temperature curves at constant temperature or entropy, we obtain the pressure-induced entropy change $\Delta S_{\rm p}$ (Fig. 5c, Fig. S19) and adiabatic

temperature change $\Delta T_{\rm p}$ (Fig. 5d, Fig. S20), where the atmospheric pressure is taken as the initial value for compression and the pressure P is taken as the initial value for the decompression process. A low pressure of 0.04 GPa is sufficient to completely drive the phase transition for the n=10 single crystal, producing the maximum isothermal $\Delta S_{\rm p} \sim 230 \, \mathrm{J \, kg^{-1} \, K^{-1}}$ (Fig. 5c). For the n=9 sample, 0.06 GPa produces the maximum

Table 2 Barocaloric materials with phase-transition entropy changes larger than $100 \,\mathrm{J\,kg^{-1}\,K^{-1}}$.

Compounds	Δ <i>p</i> (G Pa)	$T_{\rm s}$ (cooling) (K)	$ \Delta S_{\rm p} $ $ ({\rm Jkg^{-1}K^{-1}})$	Hys.(K) <i>T</i> rate (K/min)	dT _s /dP (K/GPa)	$ \Delta S_r$ $ (J kg^{-1} K^{-1})$	$ \Delta T_{\rm r} $ (K)	Ref.
NPG (CH ₃) ₂ C(CH ₂ OH) ₂	0.091	300	384	14 (0.1)	75	0	0	12
NPG (CH ₃) ₂ C(CH ₂ OH) ₂	0.57	300	530 ± 5	19 ± 1 (2)	93 ± 18	510	30	13,17
NPG (CH ₃) ₂ C(CH ₂ OH) ₂	0.1	300	405 ± 5	19 ± 1 (2)	93 ± 18	0	0	13,17
TRIS (NH ₂)C(CH ₂ OH) ₃	0.25	331.2 ± 0.5	600 ± 60	75 (2–4)	15 ± 6	0	0	17
TRIS (NH ₂)C(CH ₂ OH) ₃	0.1	331.2 ± 0.5	445 ± 5	75 (2–4)	15 ± 6	0	0	17
PG (CH ₃)C(CH ₂ OH) ₃	0.25	350.5 ± 0.5	510 ± 50	4 (2-4)	94 ± 3	500 ± 5	10 ± 1	17
PG (CH ₃)C(CH ₂ OH) ₃	0.1	350.5 ± 0.5	445 ± 5	4 (2-4)	94 ± 3	155 ± 5	1	17
AMP (NH ₂)(CH ₃)C(CH ₂ OH) ₂	0.25	_	690 ± 70	_	85 ± 7	0	0	17
AMP (NH ₂)(CH ₃)C(CH ₂ OH) ₂	0.1	-	600 ± 5	=	85 ± 7	0	0	17
NPA (CH ₃) ₃ C(CH ₂ OH)	0.27	211.3 ± 0.5	330 ± 30	20 (2–4)	119 ± 2	250 ± 5	16 ± 1	17
NPA (CH ₃) ₃ C(CH ₂ OH)	0.1	211.3 ± 0.5	245 ± 5	20 (2–4)	119 ± 2	0	0	17
CaF ₂	_	1400*	225.6	_	_	-	_	14
1-Cl-ada	0.1	245	170 ± 5	9 (2–4)	270	160 ± 5	16 ± 1	19
1-Br-ada	0.1	308	150 ± 5	9 (2.5–3)	333	135 ± 5	21 ± 1	19
Fe ₃ (bntrz) ₆ (tcnset) ₆	0.055	316	_	2 (2)	250	80	10	20
Fe ₃ (bntrz) ₆ (tcnset) ₆	0.26	316	=	2 (2)	=	120	35	20
(CH ₃ -(CH ₂) ₉ -NH ₃) ₂ MnCl ₄	0.1	306 ± 1	250	9 (2)	_	~250	~12	25
(CH ₃ -(CH ₂) ₈ -NH ₃) ₂ MnCl ₄	0.1	289.1 (294.3 [*])	212	5.2 (1)	172	212	10	This wor
(CH ₃ -(CH ₂) ₉ -NH ₃) ₂ MnCl ₄ single	=	308.9 (311.5 [*])	=	2.6 (0.1)	=	=	-	This wor
crystal	0.1	308.4 (312.4 [*])	230	4.0 (1)	150	230	10	

The phase-transition temperature (T_s) , hysteresis (Hys.) at atmospheric pressure measured by DSC where the temperature ramping rate is also given, the pressure sensitivity (dT_s/dP) , barocaloric entropy change (ΔS_p) , reversible barocaloric entropy change (ΔS_r) and adiabatic temperature change (ΔT_r) are listed.

 $\Delta S_{\rm p} \sim 212\,{\rm J\,kg^{-1}\,K^{-1}}$ (Fig. S19). Under 0.1 GPa, $\Delta T_{\rm p}$ reaches ~15 K and ~14 K for n=10 and n=9, respectively (Fig. 5d and Fig. S20). Moreover, the reversible $\Delta S_{\rm r}$ (Fig. 5e and Fig. S21) is reckoned as the overlap of the $\Delta S_{\rm p}$ of compression and decompression, while similarly, the reversible $\Delta T_{\rm r}$ (Fig. 5 f and Fig. S22) is obtained, excluding the influence of thermal hysteresis 10,19. At 0.08 GPa, the reversible entropy change reaches its maximum. $\Delta S_{\rm r} \sim 230$ and $\sim 212\,{\rm J\,kg^{-1}\,K^{-1}}$ for n=10 and n=9, respectively (Fig. 5e and Fig. S21), while the reversible $\Delta T_{\rm r}$ is the same at 0.1 GPa ($\Delta T_{\rm r} \sim 10\,{\rm K}$ for both) (Fig. 5f and Fig. S22). which can be understandable noting that the n=9 ($\sim 172\,{\rm K}$ GPa $^{-1}$) shows higher pressure sensitivity than n=10 ($\sim 150\,{\rm K}$ GPa $^{-1}$), see Table 2.

Furthermore, we compare the reversible barocaloric capacities of $(CH_3-(CH_2)_{n-1}-NH_3)_2MnCl_4$ (n=9,10) with those of other representative reported barocaloric materials, including the plastic crystals PG $((CH_3)C(CH_2OH)_3)^{13,17}$, NPG $((CH_3)_2C(CH_2OH)_2)^{13,17}$, NPA $((CH_3)_3C(CH_2OH))^{13,17}$, 1-Cl-adamantane $(Cl-ada)^{19}$, 1-Br-adamantane $(Cl-ada)^{19}$

and the material with spin-crossover Fe₃(bntrz)₆(tcnset)₆²⁰. As shown in Fig. 6 and the inset, at low pressures (less than 0.1 GPa), the achievable maximum ΔS_r of $(CH_3-(CH_2)_{n-1}-NH_3)_2MnCl_4$ (n=9,10) is remarkably higher than that of other reported materials, while the ΔT_r is also competitive, which indicates the attractive forces of the $(CH_3-(CH_2)_{n-1}-NH_3)_2MnCl_4$ (n=9,10) among refrigerants applied under low-pressure conditions.

Conclusions

In conclusion, for the emergent colossal reversible BCE in organic-inorganic perovskite hybrids $(CH_3-(CH_2)_{n-1}-NH_3)_2MnCl_4$ (n=9,10), we successfully grew a single crystal, and the underlying mechanism was determined by high-resolution SC-XRD, IR spectroscopy and DFT calculations. The $(CH_3-(CH_2)_{n-1}-NH_3)_2MnCl_4$ (n=10) single crystal undergoes a structural transformation from a monoclinic layered perovskite into a tetragonal structure around $T_s \sim 311.5$ K. However, the rigid conformation of the $(CH_3-(CH_2)_9-NH_3)^+$ organic chains attaching to $MnCl_4^{\ 2^-}$ inorganic frameworks becomes unobservable,

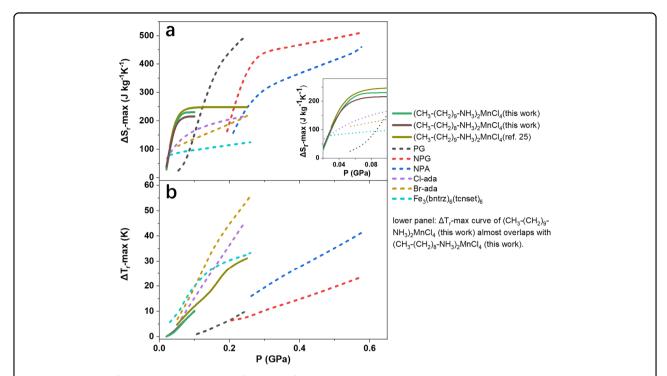


Fig. 6 Comparison of reversible barocaloric performances for representative barocaloric materials. a The maximum reversible isothermal entropy change ΔS_r -max and (**b**) reversible adiabatic temperature change ΔT_r -max for (CH₃-(CH₂)_{n-1}-NH₃)₂MnCl₄ (n=10) single crystal and (CH₃-(CH₂)_{n-1}-NH₃)₂MnCl₄ (n=10) compared to that of plastic crystals PG ((CH₃)C(CH₂OH)₃), NPG ((CH₃)₂C(CH₂OH)₂), NPA ((CH₃)₃C(CH₂OH)), 1-Cl-adamantane (Cl-ada), 1-Br-adamantane (Br-ada), and the spin-crossover material Fe₃(bntrz)₆(tcnset)₆ under variable pressures. The (CH₃-(CH₂)_{p-1}-NH₃)₂MnCl₄ reported in ref. ²⁵ is also included. The inset of (**a**) shows the enlarged details of the comparison of reversible ΔS_r -max under $P \le 0.1$ GPa for all samples. Note that the solid lines represent the results of (CH₃-(CH₂)_{n-1}-NH₃)₂MnCl₄.

and only MnCl6 octahedra can be detected, but its obvious distortion due to tight bonding of organic moieties disappears at high temperatures. All these points to the highly disordered organic chains above the T_s . The IF spectra give fingerprint information across T_s for each component, i.e. the NH₃ head, the CH₂ and C-C chains, and the CH₃ tails, in the entire $(CH_3-(CH_2)_9-NH_3)^+$ chains, which disclose the nature of drastic transformation from ordered rigidity to disordered flexibility and explains the huge phase-transition entropy comparable to melting entropy of organic chains. Moreover, the DFT calculations combined with the experimental observations give the possible conformation of the organic chains above the T_s . The large entropy change and the small hysteresis as low as 2.6 K (0.1 K min⁻¹) and 4.0 K (1 K min⁻¹) related closely to the specific hybrid organicinorganic structure and single-crystal nature leads to the colossal reversible BCE. The excellent barocaloric performance of $(CH_3-(CH_2)_{n-1}-NH_3)_2MnCl_4$ emphasizes the sufficient significance of the entropy derived from the conformational disorder of organic chains. One can explore many more organic-inorganic hybrid materials with analogous barocaloric mechanisms, which are promising for facilitating barocaloric refrigeration.

Acknowledgements

This work was supported by the Science Center of the National Science Foundation of China (52088101), the National Key Research and Development Program of China (2021YFB3501202, 2020YFA0711502, 2019YFA0704900, 2018YFA0305704, 2021YFA1400300), the National Natural Sciences Foundation of China (U1832219, 51771223, 51971240, 52101228, 52111530044), the Strategic Priority Research Program (B, XDB33030200) and the Key Research Programs (ZDRW-CN-2021-3, 112111KYSB20180013) of the Chinese Academy of Sciences (CAS). The authors acknowledge Professor Hui Huang (University of Chinese Academy of Sciences, Beijing 100049, China) for his kind help during the synthesis of (CH₃-(CH₂)_{n-1}-NH₃)₂MnCl₄ single crystals. Jiazheng Hao acknowledges the China Postdoctoral Science Foundation (2021M691857).

Author details

¹Beijing National Laboratory for Condensed Matter physics, Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, P. R. China. ²School of Physical Sciences, University of Chinese Academy of Sciences, 101408 Beijing, China. ³Songshan Lake Materials Laboratory, 523808 Dongguan, Guangdong, P. R. China. ⁴Fujian Innovation Academy, Chinese Academy of Sciences, 350108 Fuzhou, Fujian, China. ⁵Ganjiang Innovation Academy, Chinese Academy of Sciences, 341000 Ganzhou, Jiangxi, China. ⁶NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA. ⁷Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 315201 Ningbo, Zhejiang, China

Author contributions

F.H. B.S., and J.H. conceived the project idea. F.H. Y.G. J.H. J.W. Q.H., and B.S. designed the experiments. Y.G. and X.L. grew the single crystals. H.Z. Y.W. and B.W. helped to prepare the samples. H.L. and Y.G. collected the SC-XRD data. Y.G. Y-T.S. H.L., and Y-G.S. analyzed the SC-XRD data. F.S. Q.H. C.Z., and Z.Y. helped with the structural analysis. Y.G. and H.Z. performed the IR spectroscopy

measurements and analysis, and Y-L.L. further confirmed and analyzed the spectra. Y.G. and H.S. performed the DFT calculations and analysis. Y.G. measured and analyzed the barocaloric performance. Z-B.Y. helped with the barocaloric measurements. Z.T, Y.L. Y.C. Y-G.S. T.Z., and J.S. participated in fruitful discussions. Y.G. and F.H. wrote and edited the manuscript with discussion and input from all coauthors.

Conflict of interest

The authors declare no competing interests.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41427-022-00378-4.

Received: 17 October 2021 Revised: 9 February 2022 Accepted: 17 February 2022

Published online: 15 April 2022

References

- Moya, X., Kar-Narayan, S. & Mathur, N. D. Caloric materials near ferroic phase transitions. Nat. Mater. 13, 439–450 (2014).
- Yuce, S. et al. Barocaloric effect in the magnetocaloric prototype Gd₅Si₂Ge₂. Appl. Phys. Lett. 101, 071906 (2012).
- Matsunami, D., Fujita, A., Takenaka, K. & Kano, M. Giant barocaloric effect enhanced by the frustration of the antiferromagnetic phase in Mn₃GaN. *Nat. Mater.* 14, 73–78 (2015).
- Stern-Taulats, E. et al. Reversible adiabatic temperature changes at the magnetocaloric and barocaloric effects in Fe₄₉Rh₅₁. Appl. Phys. Lett. 107, 152409 (2015).
- Mañosa, L. et al. Inverse barocaloric effect in the giant magnetocaloric La-Fe-Si-Co compound. Nat. Commun. 2, 595 (2011).
- Mikhaleva, E. A. et al. Caloric characteristics of PbTiO₃ in the temperature range of the ferroelectric phase transition. *Phys. Solid State* 54, 1832–1840 (2012).
- Stern-Taulats, E. et al. Inverse barocaloric effects in ferroelectric BaTiO₃ ceramics. APL Mater. 4, 091102 (2016).
- Lloveras, P. et al. Giant barocaloric effects at low pressure in ferrielectric ammonium sulphate. Nat. Commun. 6, 8801 (2015).
- Aznar, A. et al. Giant and reversible inverse barocaloric effects near room temperature in ferromagnetic MnCoGeB_{0.03}. Adv. Mater. 31, 1903577 (2019).
- Aznar, A. et al. Giant barocaloric effects over a wide temperature range in superionic conductor Aql. Nat. Commun. 8, 1851 (2017).
- Bermudez-Garcia, J. M. et al. Giant barocaloric effect in the ferroic organicinorganic hybrid [TPrA][Mn(dca)₃] perovskite under easily accessible pressures. Nat. Commun. 8, 15715 (2017).
- Li, B. et al. Colossal barocaloric effects in plastic crystals. Nature 567, 506–510 (2019).
- Lloveras, P. et al. Colossal barocaloric effects near room temperature in plastic crystals of neopentylolycol. *Nat. Commun.* 10, 1803 (2019).

- Cazorla, C. & Errandonea, D. Giant mechanocaloric effects in fluorite-structured superionic materials. Nano Lett. 16, 3124–3129 (2016).
- Imamura, W. et al. Supergiant barocaloric effects in acetoxy silicone rubber over a wide temperature range: great potential for solid-state cooling. Chin. J. Polym. Sci. 38, 999–1005 (2020).
- Li, F. B. et al. Understanding colossal barocaloric effects in plastic crystals. Nat. Commun. 11, 4190 (2020).
- Aznar, A. et al. Reversible and irreversible colossal barocaloric in plastic cystals. J. Mater. Chem. A 8, 639 (2020).
- Yoshida, Y., Yuse, K., Guyomar, D., Capsal, J.-F. & Sebald, G. Elastocaloric effect in poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) terpolymer. *Appl. Phys. Lett.* 108, 242904 (2016).
- Aznar, A. et al. Reversible colossal barocaloric effects near room temperature in 1-X-adamantane (X=Cl, Br) plastic crystals. Appl. Mater. Today 23, 101023 (2021).
- Romanini, M. et al. Giant and reversible barocaloric effect in trinuclear spincrossover complex Fe₃ (bntrz)₆ (tcnset)₆. Adv. Mater. 33, 2008076 (2021).
- Silva, D. J., Ventura, J. & Araújo, J. P. Caloric devices: a review on numerical modeling and optimization strategies. *Int. J. Energy Res.* 1–42, https://doi.org/ 10.1002/er.7023 (2021).
- 22. Aprea, C., Greco, A., Maiorino, A. & Masselli, C. The use of barocaloric effect for energy saving in a domestic refrigerator with ethylene-glycol based nanofluids: a numerical analysis and a comparison with a vapor compression cooler. *Energy* **190**, 116404 (2020).
- Mitzi, D. B. Synthesis, structure, and properties of organic-inorganic perovskites and related materials. *Prog. Inorg. Chem.* 48, https://doi.org/10.1002/ 9780470166499.ch1 (1999).
- Li, W. et al. Study of solid-solid phase change of (n-C_nH_{2n+1}NH₃)₂MCl₄ for thermal energy storage. Thermochim. Acta 326, 183–186 (1999).
- Li, J. et al. Colossal reversible barocaloric effects in layered hybrid perovskite (C₁₀H₂₁NH₃)₂ MnCl₄ under low pressure near room temperature. Adv. Funct. Mater. 31, 2105154 (2021).
- Mitzi, D. B. Synthesis structure, and properties of organic-inorganic perovskites and related materials. *Prog. Inorg. Chem* 48, 1–121 (1999).
- Liu, Y., Di, Y., He, D., Zhou, Q. & Dou, J. Crystal structures, lattice potential energies, and thermochemical properties of crystalline compounds (1-C_nH_{2n+1} NH₃)₂ZnCl₄(s)(n=8, 10,12, and 13). *Inorg. Chem.* **50**, 10755–10764 (2011).
- Casal, H. L., Cameron, D. G. & Mantsch, H. H. A vibrational spectroscopic characterization of the solid-phase behavior of n-decylammonium chloride (n-C10H21NH3Cl) and bis(n-decylammonium) tetrachlorocadmate [(n-C10H21NH3)2CdCl4]. J. Phys. Chem. 89, 5557–5565 (1985).
- 29. Barman, S., Venkataraman, N. V., Vasudevan, S. & Seshadri, R. Phase transitions in the anchored organic bilayers of long-chain alky-lammonium lead iodides $(C_nH_{2n+1}NH_3)_2Pbl_4$, n=12, 16, 18. *J. Phys. Chem. B* **107**, 1875–1883 (2003).
- Jalbout, A. F., Ouasri, A., Jeghnou, H. & Rhandour, A. Experimental and theoretical studies of monoalkylammonium hexafluorosilicate [CH3(CH2)nNH3]
 2SiF6 (n = 2, 3) and ethylammonium hexafluorosilicate [(C2H5)2NH2]2SiF6.
 Vib. Spectrosc. 44, 94–100 (2007).
- 31. MacPhail, R. A., Straws, H. L. & Snyder, R. G. C.-H. stretching modes snyder, R. G. C.-H. stretching modes and the structure of n-alkyl chains. 2. long, all-trans chains. *J. Phys. Chem.* **88**, 334–341 (1984).
- Guillaume, F. et al. Molecular motions of decylammonium chains in the perovskite type layered compound (C₁₀H₂₁NH₃)₂MnCl₄. Mol. Phys. 67:3, 665–679 (1989).
- Manosa, L. & Planes, A. Materials with giant mechanocaloric effects: cooling by strength. Adv. Mater. 29, 1603607 (2017).