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Abstract

Chalcopyrite lI-IV-V, semiconductors are promising materials in nonlinear optical, optoelectronic, and photovoltaic
applications. In this work, pressure-tailored optical properties as well as pressure-driven emergent superconductivity in
chalcopyrite ZnSiP, are reported via photoluminescence (PL) spectroscopy and electrical transport experiments.
During compression, the PL peak energy exhibits a plateau between 1.4 and 8.7 GPa, which is accompanied by a
piezochromic transition and correlated with the progressive development of cation disorder. Upon further
compression across a phase transition from tetragonal to cubic rock-salt structure, superconductivity with a critical
temperature 7.~ 8.2 K emerges immediately. T. decreases in the range of 24.6-37.1 GPa but inversely increases at
higher pressures, thereby exhibiting an unusual V-shaped superconducting phase diagram. These findings present
vivid structure—property relationships, which not only offer important clues to optimize the optical and electronic
properties, but also provide a new way to use compression to switch between different functionalities.

Introduction

As isoelectronic analogs of III-V zincblende materials,
zinc-based chalcopyrites ZnXPn, (X=Si, Ge, and Sn;
Pn =D, As, and Sb) have recently attracted great attention
because of their potential technological applications in
nonlinear optics, optoelectronics, and photovoltaics'°.
For instance, ZnGeP, can be applied to nonlinear optical
devices based on its large nonlinear coefficient, birefrin-
gence, and large-area growth availability’. ZnSnP, is an
absorber material for solar cells, whose bandgap can be
effectively engineered by tuning the cation disorder®.
Furthermore, a recent first-principles calculation pre-
dicted that ZnSnP, displays large shift-current
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conductivity, a bulk photovoltaic phenomenon corre-
lated with the Berry connection between the valence and
conduction bands'®. As for ZnSiP,, it possesses a direct
bandgap of E; ~2.01 eV® and a typically cation-ordered
tetragonal structure with intrinsic stability and defect
tolerance”. Apart from its inexpensive, earth-abundant,
and nontoxic elemental constituents, ZnSiP, has become
a promising candidate for transitional tandem solar cells
owing to its small lattice mismatch and good refraction
index matching with Si, little parasitic below-bandgap
absorption, excellent photoresponse, and high open-
circuit voltage>''™3, After disorder is introduced into
the cation sublattice, ZnSiP, can be further used as a high-
performance anode material for next-generation Li-ion
batteries’.

As one of the fundamental state parameters, pressure
is an effective and clean way to tune the lattice constant,
crystal structure, and electronic state, thus varying
the fundamental physical properties of materials.
Regarding the pressure engineering of photovoltaic and
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optoelectronic materials, various exotic phenomena
have been revealed recently, including photo-
luminescence (PL) emission enhancement, prolonged
carrier lifetime, bandgap optimization, and super-
conductivitym’m. For the photovoltaic material ZnSiP,,
Bhadram et al.** reported that it undergoes a phase
transition from tetragonal to cubic rock-salt structure
between 27 and 30 GPa, in agreement with the ab initio
investigations®®, However, a systematic investigation of
the electronic and optical properties of ZnSiP, under
pressure is still lacking to date.

Here, we systematically investigate the pressure effect
on the structural, optical, and electronic properties of the
chalcopyrite semiconductor ZnSiP, through various
experimental measurements, including synchrotron X-ray
diffraction (XRD), Raman spectroscopy, PL spectroscopy,
optical microscopy, and electrical transport measure-
ments. We show that pressure-induced modulations in
optical and electronic properties correlate well with the
structural evolution. For the optical properties, the peak
energy of the PL spectrum displays a plateau between 1.4
and 8.7 GPa due to the presence of disorder in the cation
sublattice. Moreover, along with the structural phase
transition from tetragonal to cubic phase, a V-shaped
superconducting behavior is observed.

Materials and methods
Sample synthesis and characterization at ambient pressure
Single crystals of ZnSiP, were grown via a flux
method®*. Room-temperature X-ray diffraction (XRD)
patterns of single crystals were obtained by using a Rigaku
X-ray diffractometer with Cu K|, radiation (1 = 1.5406 A).
The atomic proportions of the crystals were characterized
by energy dispersive X-ray spectroscopy (EDXS).
Absorption spectra were collected by using a UV/Vis/NIR
spectrometer (CRAIC 20/30PV).

High-pressure PL spectra, Raman spectra, and X-ray
diffraction measurements

High-pressure PL emission, Raman scattering, and
angle-dispersive synchrotron XRD experiments were
conducted in symmetric diamond anvil cells (DACs) with
rhenium (Re) as the gasket and silicone oil as the
pressure-transmitting medium (PTM). The culet of the
diamond was 300 um. The PL and Raman spectra were
recorded in a Renishaw spectrometer (1 =532nm) at
powers of 025mW and 2.5mW, respectively. The
dimensions of cleaved single-crystal flakes were ~50 x
50 x 10 um®. Powder angle-dispersive XRD experiments
were carried out at beamline BL15U1 of Shanghai Syn-
chrotron Radiation Facility (SSRF). The wavelength of the
monochromatic X-ray beam was 0.6199 A. The Dioptas®®
and Rietica®® programs were employed for image inte-
grations and Le Bail refinements, respectively.
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High-pressure electrical transport measurements
High-pressure transport experiments were performed in
a screw-pressure-type DAC made of CuBe alloy. A pair of
anvil culets of 300 pm was used. A mixture of epoxy and
fine cubic boron nitride (c-BN) powder was compressed
firmly to insulate the electrodes from the steel gasket. A
single-crystal flake with dimensions of ~120 x 40 x 10 um?
was loaded together with NaCl fine powder and ruby
powder. A four-probe configuration was utilized to mea-
sure the resistance of the flake, where the external mag-
netic field was perpendicular to the surface of the flake.
The ruby fluorescence shift was used to calibrate the
pressure at room-temperature in all experiments”.

Results and discussion

The synthesized ZnSiP, single crystals were characterized
via various experimental techniques under ambient condi-
tions. Fig. S1 displays a single-crystal XRD pattern collected
from a flake freshly cleaved from a bulk crystal, which
shows a (101) orientation of the cleavage plane. The EDXS
measurement reveals that the cleaved flake is off-
stoichiometric with a real composition of Zngg5.002SiP2.07
+003- The absorption spectrum shown in Fig. S2a yields a
bandgap of ~2.06 eV, consistent with that reported in recent
literature®. The PL spectrum at room-temperature (see Fig.
S2b) features a broad emission band peaking at ~919 nm
(equivalent to 1.36eV), which can be ascribed to the
donor—acceptor pair transitions via defects (vacancies and
antisites)>. In ref. > Martinez et al. showed that the PL peak
energy of ZnSiP, varies from 1.8eV to 1.67eV as the
temperature is increased from 5K to 100K, illustrating a
temperature effect on the PL peak position. Based on the
data of ref. > a value of ~1.4eV at 300K is obtained by
extrapolation according to the approximate model for
temperature-dependent PL spectra®®*’. These results con-
sistently confirm the high quality of our samples.

High-pressure synchrotron XRD experiments were
conducted on powdered single-crystal ZnSiP, to explore
the structural stability at high pressures. Fig. 1a shows the
representative XRD patterns at room-temperature. We
note that the peaks at ~15° and ~17° arise from the gasket
(Re) (see Fig. S3), which persist in the entire pressure
region. In addition, all the other peaks progressively shift
to larger angles without the appearance of new peaks
under compression up to 23.3 GPa, indicating the stability
of the pristine tetragonal structure. A structural phase
transition to the cubic rock-salt type (Fm-3m, No. 225) is
detected upon further compression, in agreement with the
results of Bhadram et al.**> Above 23.3 GPa, one can see
that the intensity of the peak at ~15° shows a subtle
enhancement, and a broad peak develops at ~22° in the
meantime. The structural transition is complete ca.
36.7 GPa, where the high-pressure cubic phase possesses
cation disorder, as evidenced by the broad features in the
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Fig. 1 Structural phase transition of ZnSiP, under pressure. a Typical powder synchrotron X-ray diffraction patterns at room-temperature (A =
06199 A). The asterisks (*) denote the peaks of the rhenium gasket. b Raman spectra of ZnSiP, single crystals at room-temperature (A = 532 nm) with
a semilogarithmic scale. ¢ Upper: Pressure-dependent lattice parameters a and ¢ for the pristine tetragonal (--42d, Z = 4) and high-pressure cubic (Fm-
3m, Z=2) phases. Lower: Unit-cell volume as a function of pressure. The solid lines are the fittings according to the third-order Birch-Murnaghan

equation of state. d Pressure-dependent Raman modes of ZnSiP..

XRD patterns. Although peak broadening in the XRD
pattern can be caused by nonhydrostatic compression
associated with the PTM, similar broadening behavior was
also observed by Bhadram et al.*” They used Ar and He as
the PTMs, which provide better hydrostatic conditions
than the silicone oil used in our case®’. The extracted
lattice parameters a and ¢ are displayed in the upper part
of Fig. 1c. The unit-cell volume as a function of pressure
can be fitted by the third-order Birch-Murnaghan equa-
tion of state®’; see the solid lines in the lower panel of Fig.
1c. The fittings yield ambient pressure volume V= 302.0
(4) A3, bulk modulus B, =97.5(6) GPa, and first-order
derivative of the bulk modulus at zero pressure By = 6.3
(0) for the pristine tetragonal phase and 124.9(8) A3 1100
(1) GPa, and 3.4(5) for the high-pressure cubic phase.
Note that the errors caused by Le Bail refinements and/or
nonhydrostatic conditions are not included for the
equation of state fitting. The structural phase transition
yields a unit-cell volume contraction AV/V ~19.1% at
27.6 GPa, similar to the case of a previous report™,

Figure 1b depicts selective room-temperature Raman
spectra of ZnSiP, at various pressures. At 0.2 GPa, the
Raman vibrational modes centered at 102.0, 129.9, 185.3,
264.8, 334.4, 338.2, 344.6, 464.8, 494.8, and 519.7 cm
can be assigned to E, By, E, E1, Ay, By, Bor, E, Bor-E, and
Byi-E;, respectively®’. The evolutions of these modes
under pressure are qualitatively consistent with those
reported in ref. 2%, which were believed to accord with a
scenario of a two-stage transition. Based on the model
proposed by Bernard and Zunger®?, it was suggested that
Zn and Si cations substitute each other in the first stage,
leading to a partially cation-disordered sublattice in the
low-pressure tetragonal phase. The second stage involves
the structural transition from the tetragonal phase to the
high-pressure cubic phase®”. The strain energy, set up by
the atomic size mismatch between the Zn-P and Si-P
bond lengths, could be the reason to control the nature of
the state of order in chalcopyrite ZnSiP,***>. Owing to
the lattice instability caused by progressive development
of cation disorder, the modes below 200cm ' that
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correspond to acoustic zone-center phonon modes dis-
play abnormal evolutions in both frequency and full width
at half maximum (FWHM). As shown in Fig. S4, in
contrast to the continuous blueshift of optical phonon
modes, B; and E demonstrate a crossover from blueshift
to redshift ca. 8 and 15 GPa, respectively. Meanwhile, the
FWHM of each mode shows corresponding changes.
Along with the structural transition to the cubic phase
upon further compression, these modes show an abrupt
reduction in intensity above 27.8 GPa and completely
disappear when the structural transition completes at
36.7 GPa. A similar pressure-induced two-stage order-
disorder transition was also claimed in defect chalcopyrite
CdAl,S,**, nevertheless, direct experimental evidence of
the disorder in ZnSiP, is lacking.

We further investigated the pressure effect on the
optical properties of ZnSiP,. Figure 2a displays the PL
spectra of ZnSiP, at different pressures. At 0.7 GPa, both
the profile and PL peak position are analogous to those at
ambient pressure (see Fig. S2b). As the pressure increases
up to 8.7 GPa, the relative intensity of the PL peak gra-
dually decreases, but the profile remains nearly unchan-
ged. The PL intensity undergoes a strong suppression at
11.7 GPa and becomes almost undetectable at 16.9 GPa,
as shown in Fig. 2a. In contrast to the common
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Fig. 2 Pressure evolution of the luminescent properties of ZnSiP,
single crystals. a Room-temperature PL spectra under compression.
b Pressure dependence of the PL peak. The red star denotes the result
at ambient pressure. The dashed line is a guide to the eyes. ¢ Optical
micrographs of ZnSiP, in a DAC upon compression, which
demonstrates a piezochromic phenomenon.
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expectation that the peak energy should decrease mono-
tonically with increasing pressure due to the enhancement
of orbital overlapping caused by lattice shrinkage, the PL
peak energy of ZnSiP, displays a plateau between 1.4 and
8.7 GPa followed by an abrupt decrease at higher pres-
sures (see Fig. 2b). Note that anomalous evolution of the
PL energy under pressure has been observed in organo-
lead perovskites'”*. For example, the blueshift of the PL
energy in perovskite (MA)PbBr; was attributed to
pressure-induced  amorphization breaking certain
bonds'’. In (MA)PbI;, the abrupt blueshift of the PL
energy was ascribed to octahedral tilting, which decreases
orbital overlapping'®. For chalcopyrite ZnSiP,, Martinez
et al.2 showed that Si,,2" and/or P!t antisite defects
contribute to the donor level, while Zng*> and/or Sip'
antisite defects form the acceptor level. The abnormal
plateau could be attributed to the progressive develop-
ment of cation disorder because donor—acceptor pair
transitions are the primary PL mechanism in ZnSiP,. The
optical micrographs in Fig. 2c demonstrate a piezo-
chromic transition in compressed ZnSiP,. During the
compression process, ZnSiP, changes from its original
transparent red to translucent dark red at 7.5 GPa and
eventually turns to opaque black at 16.7 GPa.

Because of the insulating nature of ZnSiP,, the
resistance at 300K is beyond our instrumental limit
(10 Q1) and could not be detected below 14.0 GPa.
Figure 3a shows the temperature dependence of the
resistance R(T) of ZnSiP, at various pressures up to
55.5 GPa. Starting from 14.0 to 21.5 GPa, ZnSiP, dis-
plays semiconducting behavior, as evidenced by the
increase in resistance upon cooling. A further increase
in pressure leads to a semiconducting-metallic transi-
tion at 24.6 GPa. Strikingly, the occurrence of metalli-
zation is accompanied by a resistance drop below
~8.2K (see Fig. 3b). The drop in the R(T) curve
becomes increasingly sharper, and zero resistance is
finally observed at 37.1 GPa, signaling pressure-induced
superconductivity in ZnSiP,. Meanwhile, the super-
conducting critical temperature 7. decreases with
increasing applied pressure, reaching a minimum at
37.1 GPa, followed by a continuous increase up to
55.5 GPa, the highest pressure applied in this study. We
further measured the R(T) curves under various mag-
netic fields to determine the upper critical field at
44.4 GPa, as shown in Fig. 3c. By defining T, as the
onset temperature of the superconducting transition,
we constructed the temperature-magnetic field phase
diagram in the inset of Fig. 3c. According to the
Werthamer—Helfand—Hohenberg (WHH) model®, the
yielded upper critical field yoH(0) is ~3.0 T. Note that
the upper critical field is much lower than the resultant
Pauli limiting field of yuoHp(0) = 1.84T,, which suggests
the absence of Pauli pair breaking.
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Fig. 4 Pressure evolution of the structural, optical, and electronic
properties of ZnSiP,. Pressure evolution of the superconducting
transition onset temperature T. and PL peak energy from PL analyses.
The colored areas are guides to the eyes, indicating the distinct
conducting states, i.e, semiconductor, metal, and superconductor. The
black and red horizontal arrows indicate the low-pressure tetragonal
phase and high-pressure cubic phase, respectively.
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To obtain a comprehensive understanding of the evo-
lution of the PL, electrical conductivity, and crystal
structure in pressurized ZnSiP,, we constructed a phase
diagram, as shown in Fig. 4. It is clear that the appearance

of superconductivity can be directly attributed to the
structural transition from the tetragonal to cubic phase ca.
23 GPa. In the tetragonal phase, ZnSiP, is situated in the
semiconducting regime but possesses the characteristic of
cation disorder. As a prelude of the structural transition,
the disorder in the cation sublattice gradually develops
during compression, leading to the plateau present from
1.4 to 8.7 GPa in the pressure evolution of the PL peak
energy. Along with the structural transition above ca.
23 GPa, ZnSiP, evolves into the superconducting regime.
In agreement with the coexistence of tetragonal and cubic
phases between 23 and 37 GPa, a measurable resistance is
still observed at temperatures below the sharp resistance
drop. Compared with the XRD results of Bhadram et al.,
who used Ar and He as PTMs, the coexisting pressure
range is much larger in our case, which indicates that the
coexistence of the two structures can be attributed not
only to the incompleteness of the phase transition itself
but also to the nonhydrostatic conditions. In the cubic
phase, the superconducting phase diagram features an
abnormal V-shaped evolution of T,. We note that a
similar V-shaped T.(P) behavior was previously reported
in some superconducting compounds, such as AFe;As,
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(A=K, Rb, Cs)***, PbTaSe,>®, and TlInTe,*’, while the
underlying mechanism is still under debate. On the one
hand, the origin of V-shaped T, behavior has been dis-
cussed in terms of a change in the superconducting
pairing symmetry or a Lifshitz transition across the cri-
tical pressure®*®, On the other hand, Yesudhas et al.*’
observed unusual giant phonon softening (A, mode)
concomitant with the V-shaped T.(P) behavior in
TlInTe,. In our case, one can see that the structural phase
transition from the tetragonal to cubic phase is almost
complete around the valley pressure of 36.7 GPa, which
implies that the V-shaped behavior might be associated
with abnormal evolution of the electron-phonon coupling
due to the incompleteness of the phase transition in that
pressure regime and/or to the nonhydrostatic conditions.

Conclusions

In summary, by systematically investigating the pressure
effect on the optical and electronic properties, we
demonstrate the pressure-induced abnormal evolution of
the PL spectrum as well as superconductivity in the chal-
copyrite semiconductor ZnSiP,. The abnormal evolution of
the PL peak energy is accompanied by a piezochromic
transition and is attributed to the gradual development of
disorder in the cation sublattice. The superconductivity
that shows a V-shaped T.(P) phase diagram can be directly
correlated with the structural phase transition from the
tetragonal to cubic phase ca. 23 GPa. Based on the fact that
a material with optoelectronic and photovoltaic applica-
tions is transformed into a superconductor, these findings
provide crucial insight into the structure—property rela-
tionships in chalcopyrite semiconductors.
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