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Abstract
Machine learning accelerates virtual screening in which material candidates are selected from existing databases, facilitating
materials discovery in a broad chemical search space. Machine learning models quickly predict a target property from
explanatory material features called descriptors. However, a major bottleneck of the machine learning model is an insufficient
amount of training data in materials science, especially data with non-equilibrium properties. Here, we develop an alternative
virtual-screening process via ensemble-based machine learning with one handcrafted and two generic descriptors to
maximize the inference ability even using a small training dataset. A joint representation with the three descriptors translates
the physical and chemical properties of a material as well as its underlying short- and long-range atomic structures to
describe a multifaceted perspective of the material. As an application, the ensemble-scope descriptor learning model was
trained with only 29 entries in the training dataset, and it selected potential oxygen-ion conductors from 13,384 oxides in the
inorganic crystal structure database. The experiments confirmed that we successfully discovered five compounds that have
not been reported, to the best of our knowledge, as oxygen-ion conductors.

Introduction
Data science is an emerging field in materials science that

has given rise to the materials informatics (MI) paradigm due
to urgent demands for lean development in clean energy
technology1,2. A common strategy for a materials search in
MI is virtual screening. Material candidates are selected from
existing databases based on high-throughput evaluations of
target properties. An ab initio calculation is used as a pow-
erful evaluator of the static properties of materials in a
restricted chemical space designed by researchers3,4. How-
ever, the number of ab initio evaluations critically drops to a
few tens of evaluations when exploring non-equilibrium
properties (e.g., ionic conductivity) because the computa-
tional cost is too large even with a massive multicore
architecture5,6. A combination of ab initio calculations and
machine learning is therefore employed to broaden the
search space5,7–9. The rapid inference of machine learning
yields potential candidates from hundreds of thousands of

compounds in a database as a first-pass screening. Then, the
ab initio calculations precisely examine this subset of the
candidates. These virtual screenings have been increasingly
employed for materials discoveries in catalysis10,11, organic
light-emitting diodes7, thermoelectric compounds12, photo-
voltaic materials13, and Li-ion cathodes3,14,15.
However, this machine learning-assisted screening

approach remains a fundamental challenge since “materials
data are not big data”16–18. While an image recognition task
typically uses many thousands of training images, the
number of well-curated materials data of non-equilibrium
properties is very limited2. Indeed, we extensively collected
training data of oxygen-ion conductors, which are used in
solid oxide fuel cells, from research papers and databases
such as the Material Project19 and Citrine Informatics
(https://citrination.com/data_views/147/matrix_search?from
=0; https://citrination.com/datasets/151085/show_search
?searchMatchOption=fuzzyMatch). However, available
data on the structures and ionic conductivity were found to
be quite limited. As a result, we compiled only 29 effective
training datasets, as shown in the Supplementary
information.
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This study proposes a fast virtual screening that max-
imizes the use of such a small amount of training data in
materials science. An evaluator of the present screening is
ensemble learning. This scheme is a well-known strategy of
machine learning to improve the generalization perfor-
mance by merging predictions from several weak classi-
fiers20. A prominent technique in our ensemble learning is
the descriptor, which is an encoded material feature
through a certain protocol, as digital arrays suitable to
inputs for the machine learning model21. The next section
shows a handcrafted descriptor and two state-of-the-art
generic descriptors: the smooth overlap of atomic positions
(SOAP)22,23 and the reciprocal 3D voxel space (R3DVS)24.
These descriptors are used to highlight the material attri-
butes in the present approach. Here, we call the joint use of
these three descriptors an ensemble-scope descriptor that
resolves the insufficient data issue. Then, we show the
results of the virtual screening for oxygen-ion conductors
along with the experimental examinations. Finally, we dis-
cuss the prediction model and discovered materials.

Methodology
An outline of the ensemble-scope descriptor is sche-

matically presented in Fig. 1. The three machine learning
models were independently trained with the dataset of
oxygen-ion conductors shown in the Supplementary
information (Table S1).

Handcrafted descriptor
The handcrafted descriptor is a knowledge-based design

policy. Relevant chemical and physical properties are
selected by experts to correlate their objective properties.
We included the atomic properties, bond valence sum
(BVS)25 and porosity properties as elements of the
descriptor generated from the crystal structures. For
example, the ion number density and polyhedron distor-
tion are calculated from the atomic positions. The por-
osity is generated using the open-source ZeO++ (http://
zeoplusplus.org/) software package. The oxygen-ion
pathway is taken into account by using the BVS and
BVS potential VBVS, which are defined by the relationship
between the nearest ions at each position in a crystal as

BVS ¼
Xn

i¼1

eðr0�riÞ=B

VBVS ¼
X

i¼1

D0fðeαðRmin�riÞ � 1Þ2 � 1g;

where r0 and B are parameters found in ref. 25 (also see
http://www.iucr.org/_data_assets/file/0006/81087/
bvparm2013_orig.cif) and D0, α, and Rmin are listed in ref. 26.
Because the BVS estimates the stable region of ions in a
crystal, it has been used as a useful quantity for the prediction
of Li-ion conductors27. These features were used to train the

Fig. 1 Graphical representation of the ensemble-scope descriptor. The present scheme is composed of three independent machine learning
models for the oxygen-ion conductivity (σ) as the target property. The first model employs a knowledge-based handcrafted descriptor whose
dimensionality is optimally reduced by the PLS model. The second descriptor is SOAP, which calculates a metric between compounds with respect to
the atomic geometry and electronic negativity. The SOAP is used for the kernel-ridge regression model. The third descriptor is R3DVS. This descriptor
encodes the BVS voxel data, which approximate the oxygen-ion transportation path into a fixed-length array that is suitable for the 3D-CNN model.
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partial least squares (PLS) regression model28,29. The number
of features was determined by the nonlinear iterative PLS
method via leave-one-out cross validation. We omitted the
features whose variance importance in projection scores was
<0.8. Consequently, 26 features were selected, as shown in
the Supplementary information.
As a result of training, the top six features that are

correlated with conductivity (the detailed definitions are
shown in the Supplementary information) were the
atomic density, oxygen density, distortion, log_MM,
min_bvs, and min_vbvs. Figure 2a shows that the higher
the oxygen-ion conductivity is, the stronger the magni-
tudes of these features. The atomic and oxygen densities
in the unit cell are considered to correlate with the oxygen
carrier concentration. The distortion introduced by the
elastic strain in a bulk is also known to be an important
factor for the oxygen-ion conductivity30.

SOAP descriptor
We adopted the alchemically extended SOAP23 as the

second descriptor. This feature was generated from the
atomic geometries of a unit cell as the input data. This
descriptor gives a similarity metric of two local atomic
environments with overlapping atomic-neighbor densities
and electronegativities, generated to ensure the rotation-
symmetry invariances. The SOAP descriptor was used as a
kernel in the kernel ridge regression. The SOAP parameters,
which are the cutoff radius (rcut), the smoothing parameter
for atomic density (ρ) and the width of the Gaussian function

to evaluate the similarity of the electronegativities (δ), were
set to rcut= 5.0Å, ρ= 0.5Å, and δ= 1. These parameters
were determined according to relevant studies23,24. We set
the oxygen sites as the origins of the atomic environments to
evaluate SOAP, embodying the ionic-polyhedral chains made
of cations and oxygen ions. The regularization parameter of
the ridge regression model was 0.5.
Figure 2b shows a two-dimensional representation of

the SOAP distances between the training data of con-
ductors by multidimensional scaling31, which is imple-
mented in scikit-learn (https://scikit-learn.org/). We can
see clusters that correspond to the classes of solid struc-
tures. Therefore, the SOAP descriptor represents the
structural feature that characterizes the ionic-polyhedral
networks that they have. For example, the perovskite
structure forms a network of corner-sharing O2�

6 octa-
hedra. It is well known that the flexibility in the defor-
mation of these network units appears to be a key for the
ion conduction mechanism because the migration of the
oxygen carrier occurs by hopping along the ionic poly-
hedral network32.

R3DVS descriptor
As a complementary descriptor to the SOAP, which can

incorporate the short-range atomic structure, we used the
R3DVS descriptor for any field quantities distributed over a
solid unit cell (e.g., electronic density, local potential)24. We
chose the BVS voxel data as the field feature. The R3DVS
converts the BVS to a voxel in reciprocal space with fixed

Fig. 2 Analysis of the learned descriptors. a A radar chart of the top six correlated features in the handcrafted descriptor. b A projection of SOAP
kernel distances on a two-dimensional map and the corresponding atomic structures highlighted with the ionic polyhedra. c The BVS isosurfaces
with a bandwidth of 1.85 ≤ BVS ≤ 2.15 for two oxides included in the training data along with their oxygen-ion conductivities σ.
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array lengths. These formatted voxel data are suitable to be
imported into three-dimensional convolutional neural net-
works (3D-CNNs)33. To accentuate the region with +2 BVS
values, where the oxygen ion (O2−) is expected to be stable,
the raw BVS data f 0 rð Þ are transformed to f(r) by

f rð Þ ¼ max 1� 2 f 0 rð Þ � 2
�� ��; 0

� �
:

The R3DVS parameters were δL*= 0.4Å and L*= 12.8 Å,
where δL* and L* are the recaptured real-space resolution
and the cutoff radius24, respectively. These parameters render
the BVS data into 323 voxels that are formatted in the
R3DVS descriptor. The architecture of the 3D-CNNs is
shown in the Supplementary information.
Figure 2c shows that the BVS in YBi3O6, which is a pro-

minent oxygen conductor, distributes more broadly than that
of the lower-oxygen conductor Ba2Zr2O6. Broadening the
BVS over a unit cell in real space may be relevant to high ion
transportation since the BVS estimates the stable region of an
ion in a crystal. The 3D-CNNs are expected to detect this
long-range correlation of the BVS distribution to the con-
ductivity, leveraging its object-pattern recognition.

Validations
The average of the three predictions of the oxygen-ion

conductivities was used as the prediction value of ensemble-
scope descriptor learning. Table 1 shows the leave-one-out
cross validations of these machine learning models. The
three descriptors provide non-small prediction errors due to
the sparsity of the training data. Ensemble-scope descriptor
learning possesses good regression accuracy similar to the
R3DVS descriptor. In particular, this approach shows the
best classification accuracy to judge whether the conductivity
is greater than the target conductivity of yttria-stabilized
zirconia (YSZ), which is popularly used for solid oxide fuel
cells. Given the regression and classification measures, we
decided to employ ensemble-scope descriptor learning as a
navigator of this material search.

Experimental conditions
We synthesized compounds that were selected from the

virtual screening by using the conventional solid-state

reaction method. The raw materials were K2CO3, MgO,
CaCO3, SrCO3, BaCO3, Y2O3, Nb2O5, Ta2O5, B2O3, Al2O3,
Ga2O3, GeO2, MnO, Fe2O3, CuO, RuO2, La2O3, Pr2O3,
Nd2O3, Eu2O3, Er2O3, Dy2O3, Ho2O3, and Bi2O3 in powder
form with purities above 3N, as were provided by Kojundo
Chemical Laboratory Co., Ltd., Saitama, Japan. The doping
elements were selected by using the concept of the Hume-
Rothery rules, in which an element with an ionic radius
similar to the host element is expected to be doped34.
Accordingly, we chose dopants such as Ca2+ for Eu3+, La3+

for Ca2+, La3+ for Ba2+, and Ca2+ for Dy3+, as listed in
Table S2. The raw materials for each selected compound
were weighed in the nominal ratio and mixed via ball mil-
ling using a 250ml pot with 80ml volume of the ZrO2 balls
(ϕ= 5mm) and 80ml of ethanol. The pot was rotated to
mix and pulverize the raw materials for 24 h. The mixed
raw materials were then collected from the slurry via eva-
poration. The obtained powder was calcined in air at 900
−1100 °C for 10 h. The calcined powder was then suffi-
ciently pulverized using a mortar. The fine powder was
compacted to a disc via die compaction without any
lubricants. The green compacts were heated at a rate of
6 °C/min and sintered at 900−1600 °C under O2 gas flow
for 1 h. The surface of the sintered bodies was polished
using abrasive papers to remove any altered layers.
The sintered bodies were characterized as follows. The

densities were determined from the dimensions and weight
of the discs. X-ray diffraction (XRD) patterns were obtained
to check the crystal structures. The specimens were densely
sintered with a relative density higher than 89%. After the Pt
electrodes were deposited on the surface of the specimen by
a sputtering method, the conductivities were measured at
700 °C via the AC impedance method using IM 3536 (Hioki
E.E. Corporation, Nagano, Japan) with a 100mV signal from
50Hz to 5MHz. The measurement atmosphere was either in
air or under a N2 gas flow (PO2: 10 ppm, dew point: below
−70 °C). The specimens were kept at the measurement
temperature for 15min before the conductivity was mea-
sured. The transport number of oxygen ions was measured
by an oxygen concentration cell method. The oxygen-rich
side was under O2 gas flow (PO2: 1 atm), and the oxygen-
poor side was under N2 gas flow (PO2: 10 ppm). The elec-
tromotive force due to the difference in O2 pressures was
corrected using a YSZ sintered body, which was 231.2mV at
700 °C.

Results and discussion
Discovery of oxygen-ion conductors by virtual screening
By using ensemble-scope learning trained by 29 entries of

the training dataset, we performed the virtual screening of
13,384 oxides recorded in the inorganic crystal structure
database (ICSD) (https://icsd.fiz-karlsruhe.de), where we
excluded oxides including hydrogen atoms because most
hydroxides are unstable at high temperatures, such as 700 °C.

Table 1 Results of the leave-one-out cross validations.

Descriptor MAE RMSE Accuracy F-score

Handcrafted 1.17 1.45 0.72 0.55

SOAP 1.15 1.42 0.76 0.46

R3DVS 0.96 1.18 0.69 0.18

Ensemble-scope 1.03 1.20 0.79 0.57

The unit of the mean absolute error (MAE) and root mean squared error (RMSE)
of the regression task is log10 σ [S/cm], where σ indicates the conductivity at
700 °C. The accuracy and F-score are measures of a binary-classification task. In
the classification task, denoted by y= log10 σ, we evaluate y as positive when
y ≥ yth and negative when y < yth. The threshold yth=−2.0 is the performance
of YSZ.
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We then chose 18 oxides with a predicted conductivity
higher than 10−4 S/cm and synthesis accessibility for our
experimental facility (details of the selection procedures are
described in Sec. 4 of the Supplementary information). Eight
oxides, EuGe2KO6, Ca3Fe2Ge3O12, BaCu2Ge2O7, and
DyAlO3, and four bismuth oxides were found as oxygen-ion
conductors. Their crystal structures are shown in Fig. 3a.
Among them, SrTa2Bi2O9, SrNb2Bi2O9, and BaNb2Bi2O9

have been reported as oxygen-ion conductors in previous
works35,36; however, we did not include them as training data
since the transport numbers at 700 °C were not known. We
thus present these bismuth oxides as those recommended by
virtual screening with our ensemble-scope learning trained
by the 29 entries. The other compounds did not show ionic
conductivities (Table S2 of Supplementary information),

which may indicate further experimental optimization, such
as the densification and proper selection of dopants. Never-
theless, our prediction led to a surprisingly high rate of dis-
covery, as discussed later. Figure 3b summarizes the
experimental and prediction conductivities. The experi-
mental values are listed in Table S3 in the Supplementary
information. These materials seem to be selected from a wide
range of chemical and structural space, and such a discovery
is supposed to be difficult via only a conventional knowledge-
based interpolation based on the crystal space group and
chemical formula of the already-known high-performance
materials. In fact, EuGe2KO6 contains an alkali-metal ele-
ment, and Ca3Fe2Ge3O12 exhibits the garnet structure; they
are apparently very different from the oxygen-ion conductors
in our training set. Some of the oxides in Fig. 3b have a larger
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deviation than the MAE or RMSE in Table 1, which may
encourage the further experimental optimization of doping,
defects, and microstructures.
Here, we note that transport properties are very affected

by the defects and the doping of inorganic materials. The
oxygen conductors typically need dopants to open a
channel for the oxygen-ion path. However, the ICSD
dataset includes mostly pure crystals without identifying
subtle defects and doping. To reconcile this common
issue of virtual screening for solids, we make the following
assumptions. First, the experimental data reported in
publications are regarded as optimum through various
synthesis processes in terms of defects and doping in each
study. Second, while the presence of defects and doping is
important in the sense of the density of the transport
carriers, the transport coefficient of one carrier itself
should be determined mainly by the intrinsic chemical
and crystal structures of the base materials recorded in
the ICSD. Finally, after training to correlate a stoichio-
metric crystal structure with the experimentally reported
conductivity, our machine learning model predicts an
attainable value via experimental optimization. We
examined whether our machine learning model could
predict an optimal value tuned by doping from a perfect
crystal structure. The crystal structures of the doped
materials were prepared as follows. The lattice constants
of the doped materials were determined by XRD analysis.
The sites of the doping atom and vacancy or interstitial
oxygen were randomly introduced into a supercell of the
non-doped crystal structure registered in the ICSD. The
size of the supercell was determined in such a way to
approximate the ratio of the doping/defect components
observed in the experiments. Then, the atomic positions
were optimized by fixing the lattice constants to the
experimental values by first-principles calculations using
the Vienna Ab initio Simulation Package (VASP)37,38.
Table 2 shows that stoichiometric and experimentally
optimized structures provide similar predictions, which
supports our assumption.
We compare these discoveries with the reported oxygen-

ion conductors in a dataset of 241 conductors downloaded
from the Citrine-Informatics website (https://citrination.
com/data_views/147/matrix_search?from=0), in which the

dataset is provided as a result of Advanced Research Pro-
jects Agency-Energy IONICS program (https://citrination.
com/datasets/151085/show_search?searchMatchOption
=fuzzyMatch). Because the Citrine database records the
pre-exponential factors and activation energies of the
oxygen-ion conductors, we estimated the conductivity at
700 °C using these quantities by the Arrhenius plot. We
sorted the conductivities by compound types defined in the
dataset. Figure 4 shows that the oxygen-ion conductivities
of the present oxides do not reach the level of YSZ. The
four bismuth oxides are classified in the “bismuth oxide”
family, which is the highest proportion in the dataset. The
remainder of the four discoveries are unclassified in the
types of reported oxygen-ion conductors, indicating new
directions of the materials design, such as potential sources
for oxygen-ion conductors. Regarding the number of dis-
coveries, we find that 241 materials have been reported as
oxygen-ion conductors in the Citrine dataset (https://
citrination.com/data_views/147/matrix_search?from=0)
over the past 41 years since 1975, meaning that six materials
per year are newly registered on average. This finding is
indeed comparable to the amount of our discovery, i.e., five
compounds (EuGe2KO6, Ca3Fe2Ge3O12, BaCu2Ge2O7,
DyAlO3, and CaTa2Bi2O9). In addition, as shown in Fig. S3
in the Supplementary information, we examined all the
experimentally verified candidates that were predicted to
have conductivities higher than 10−4 S/cm. The number of
oxides that exceeds 10−4 S/cm in the experiments is 7 in the
18 candidates. This result implies that the present screening
process is very efficient for this search task.

Table 2 Dependence of the prediction values on the
doping.

Handcrafted SOAP R3DVS Ensemble

EuKGe2O6 −1.49 −3.79 −1.84 −2.37

Eu0.833Ca0.167KGe2O6-1/12 −1.03 −3.80 −1.73 −2.19

Ca3Fe2Ge3O12 −0.92 −3.60 −1.08 −1.87

Ca2.75La0.25Fe2Ge3O12+1/8 −1.35 −3.53 −0.57 −1.82

BaCu2Ge2O7 −1.52 −3.57 −1.41 −2.17

Ba0.75La0.25Cu2Ge2O7+1/8 −1.47 −3.55 −1.00 −2.01

The value is log10 σ [S/cm], where σ indicates the conductivity at 700 °C.

Fig. 4 Comparison of the discovered oxygen-ion conductors to
historical data. The reported data are prepared from the Citrine
Informatics dataset (https://citrination.com/data_views/147/matrix_search?
from=0), which was downloaded in 2017. The labels for the compound
types are defined in the dataset. The horizontal line indicates the
conductivity of YSZ, which is popularly used for solid oxide fuel cells. The
quantity σ indicates the oxygen-ion conductivity at 700 °C.

Kajita et al. NPG Asia Materials (2020) 31 Page 6 of 8

https://citrination.com/data_views/147/matrix_search?from=0
https://citrination.com/data_views/147/matrix_search?from=0
https://citrination.com/datasets/151085/show_search?searchMatchOption=fuzzyMatch
https://citrination.com/datasets/151085/show_search?searchMatchOption=fuzzyMatch
https://citrination.com/datasets/151085/show_search?searchMatchOption=fuzzyMatch
https://citrination.com/data_views/147/matrix_search?from=0
https://citrination.com/data_views/147/matrix_search?from=0
https://citrination.com/data_views/147/matrix_search?from=0
https://citrination.com/data_views/147/matrix_search?from=0


Structural similarity
The ensemble-scope descriptor should recognize the

three-dimensional atomic information through the SOAP
and BVS descriptors. Figure 5a shows the atomic geo-
metries of the conductors together with those of the
training data entries closest to the experimentally verified
materials in terms of the SOAP distance. In particular,
focusing on the ionic polyhedra, we can see that the fea-
tures of the polyhedral network, such as the shape and
connections of the vertices and edges, are similar to each
other. Furthermore, the BVS of the discovered oxides
shown in Fig. 5b is also distributed broadly in their unit
cell. This finding implies that oxygen ions are likely to be
transported as a conductance carrier in the bulk. Such
multifaceted perspectives have facilitated the discovery of

those novel classes beyond human perception in the vast
chemical space and provide physical and chemical inter-
pretations behind the predictions. In addition, these
observations may lead to the conclusion that the
ensemble-scope descriptor still searches in the vicinity of
the training data and thus indicates a certain limitation in
the present predictions but a promising scope for a new
area of discovery with the enrichment of the training data.

Conclusion
We have shown the concept of ensemble-scope

descriptor learning that provides a pivotal advance in
virtual screening. This concept demonstrates an efficient
search capability using only a few tens of training datasets.
This result is encouraging because the common percep-
tion is that many hundreds of datasets are necessary for
material-search informatics. The generic descriptors used
here, SOAP and R3DVS, can be flexibly applied to explore
any kind of functional material because they only require
atomic coordinates. In addition, the knowledge-based
handcrafted descriptor can be employed to determine a
correlation with the target property in a compact way.
This powerful, flexible scheme, which effectively utilizes a
small dataset for large-scale searches, may provide new
opportunities for researchers to apply material-search
informatics in their respective research fields.
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