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Abstract
A self-organized n+/n homojunction is proposed to achieve ultrahigh performance of thin film transistors (TFTs) based
on an amorphous (Zn,Ba)SnO3 (ZBTO) semiconductor with sufficiently limited scattering centers. A deposited Al layer
can induce a highly O-deficient (n+) interface layer in the back channel of a-ZBTO without damaging the front channel
layer via the formation of a metal-oxide interlayer between the metal and back channel. The n+ layer can significantly
improve the field-effect mobility by providing a relatively high concentration of free electrons in the front n-channel
ZBTO, where the scattering of carriers is already controlled. In comparison with a Ti layer, the Al metal layer is superior,
as confirmed by first-principles density functional theory (DFT) calculations, due to the stronger metal-O bonds, which
make it easier to form a metal oxide AlOx interlayer through the removal of oxygen from ZBTO. The field-effect
mobility of a-ZBTO with an Al capping layer can reach 153.4 cm2/Vs, which is higher than that of the pristine device,
i.e., 20.8 cm2/Vs. This result paves the way for the realization of a cost-effective method for implementing indium-free
ZBTO devices in various applications, such as flat panel displays and large-area electronic circuits.

Introduction
Thin-film transistors (TFTs) with amorphous oxide

semiconductors (AOSs) have been incorporated into
various display applications owing to their many advan-
tages, such as their relatively high mobility (≥10 cm2/Vs),
large-area uniformity, and low-temperature process cap-
ability1–3. However, next-generation displays, such as 8 K
(8000 × 4000) active-matrix organic light-emitting diode
(AM-OLED) displays, demand much higher device per-
formance capabilities, which will allow the integration of
gate driver circuitry into these display panels. Typically, a
field-effect mobility value of 50 cm2/Vs or greater is
required4,5.
A number of high-mobility semiconductor materials,

such as InZnO (IZO), InSnZnO (ITZO), ZnSnO (ZTO),

and ZnON, have been reported in the literature6–15.
Moreover, to further improve their device performance
capabilities, structural modifications involving the use of
dual gates or metal-capping approaches have been
introduced16–20. In particular, metal-capping layers
deposited between the source and drain electrodes have
recently been reported to be effective in enhancing the
field-effect mobility while preserving other electrical
parameters19,21. Three main mechanisms are believed to
be involved. The first is the scavenging effect of the
scattering/trapping centers due to the metal layer,
implying that the field-effect mobility of the AOSs should
be improved due to the reduced scattering18,19,21. This can
be easily understood because oxygen-related defects, such
as weakly bonded or interstitial oxygen in the active
channel layer, are preferentially removed during the for-
mation of a metal-oxide layer19,21. The second mechanism
is the metal-induced crystallization (MIC) of the active
channel layer at low temperatures, which improves the
transport of carriers by reducing the number of disorder
defects in the channel material19,22. This is also
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understandable because the metal layer acts as a catalyst,
easily breaking and rearranging the weakened metal-
oxygen bonds in the channel during the postannealing
process after the deposition of the metal layer. This
phenomenon is referred to as the low-temperature MIC
of the active layer. The final mechanism stems from an
increase in the carrier concentration via electron injection
from the metal into the active channel layer driven by the
work function difference20,23. Based on band transport
percolation or mobility edge models24–26, the increased
mobility can easily be supported. However, despite much
effort in this area, it has been difficult to stably implement
TFTs based on an ultrahigh-mobility amorphous oxide
semiconductor with a field-effect mobility value exceeding
100 cm2/Vs.
Fortunately, researchers have recently reported the

theoretical design and experimental implementation of an
amorphous (Zn,Ba)SnO3 (a-ZBTO) semiconducting
oxide, resulting in high-performance devices with excel-
lent stability27. a-ZBTO tends to exhibit decreases in O-
deficient states and band tail states as the BaSnO3 (BTO)
fraction increases, meaning that it can only achieve
moderately high mobility due to the significantly reduced
carrier concentration while maintaining the ultrahigh
stability of TFTs. Hence, an ultrahigh field-effect mobility
based on a-ZBTO can be expected if the free carrier
concentration of a-ZBTO can be increased without
compromising the (especially ultrastability-related) exist-
ing properties of a-ZBTO. For this reason, it is evident
that a reliable strategy is to use a metal-capping approach
on the a-ZBTO channel without a postannealing step to
increase the carrier concentration without damaging the
stability.
In this paper, we propose ultrahigh-mobility a-ZBTO-

based TFTs achieved via the formation of an n+/n
homojunction induced by a metal-capping layer con-
sidering the collaborative outcomes of experiments and
DFT calculations. The n+/n homojunction can be self-
organized through the formation of a highly O-deficient
(n+) interface layer in the back channel layer induced by a
metal-oxide interlayer even without postannealing, pro-
viding a significant increase in the free carrier con-
centration for the front channel. Most electrons injected
from the n+ layer can be transported without serious
scattering due to the low defect density of a-ZBTO. As a
result, a device with an Al metal layer exhibits a
remarkable field-effect mobility enhancement from
20.8 cm2/Vs to 153.4 cm2/Vs without significant degra-
dation of other transfer parameters. TFTs with other
active materials, in this case IZO and ZTO, were also
examined for comparison. The mobility improvement of
metal-capped ZBTO devices was far superior to those of
IZO and ZTO TFTs. Additionally, to understand the
major carrier transport mechanisms, we performed 1/f

noise measurements on the ZBTO and Al-assisted ZBTO
TFTs. Our results indicate that selecting a semiconduct-
ing channel material with few scattering centers, such as
ZBTO, is a key factor during the fabrication of metal-
assisted TFTs capable of ultrahigh performance.

Materials and methods
Device fabrication
ZBTO devices were fabricated on heavily doped p-type

Si substrates with a thermally grown 100-nm-thick SiOx

dielectric material. Next, 20-nm-thick ZBTO active layers
were deposited by cosputtering ZnSnO3 and BaSnO3

targets with RF powers of 80 and 10W applied to the
ZnSnO3 and BaSnO3 targets, respectively. The working
pressure was 3 mTorr, while the Ar gas flow rate was fixed
at 10 sccm. After depositing the active layer, thermal
annealing was conducted at 350 °C for 1 h in air. Next,
source-drain electrodes were formed by depositing a 150-
nm-thick aluminum (Al) film by thermal evaporation
using a shadow mask. The resulting channel width (W)
and length (L) were 800 and 200 μm, respectively. Finally,
20-nm-thick Al or Ti metal layers were selectively
deposited between the source/drain electrodes with
dimensions of W/L= 1300/100 μm without subsequent
annealing. In the device patterned by photolithography
and a lift-off process, the channel W/L and metal layer W/
L were 100/50 and 800/35 μm, respectively.

Measurement
Measurements and stability tests to determine the

transfer characteristics were conducted using an HP
4156B semiconductor parameter analyzer. The field-effect
mobility values were extracted from the saturation region
with the drain voltage (VDS) fixed at 10 V. Cross-sectional
transmission electron microscopy (TEM) specimens were
prepared by in situ lift-out in a dual-beam focused ion
beam system (FIB; FEI Helios NanoLabTM). Additionally,
X-ray photoelectron spectroscopy (XPS) analyses were
performed to study the chemical bonding states of tin
cations and oxygen anions using a monochromatic Al Kα
X-ray source. Before performing the XPS analyses, the
surface of each film was sputtered with a low-energy Ar+

ion beam (200 eV) for 60 s to eliminate any possible
contamination. The peak position was calibrated with
respect to the Zn 2p peak, for which the standard binding
energy is centered at 1021.7 eV. The threshold voltage
(Vth) was defined by the gate voltage that induced a drain
current of W/L × 10 nA at a VDS of 1 V. Flicker noise
measurements were performed using a semiconductor
device analyzer (Keysight Technologies B1500A).

Density functional theory (DFT) calculations
All DFT calculations were performed using the Vienna

ab initio Simulation Package (VASP)28,29 with the
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projected augmented wave (PAW) potentials30. To trace
the diffusion of atoms in the interface region between the
a-ZBTO and metal Al/Ti layers, first-principles molecular
dynamics (MD) calculations were employed. The final
structure was then obtained using static DFT calculations.
The exchange-correlation functional based on PBEsol
(Perdew–Burke–Ernzerhof revised for solids)31 was used,
which is known to describe atomic structures well at a low
computational cost. The kinetic energy cutoff for the
plane-wave basis set was chosen to be 400 (600) eV for
MD calculations (volume optimization). In addition, k-
space integration was used with a Γ-point of (1 × 1 × 1) to
generate an amorphous structure and with a mesh of (2 ×
2 × 2) to optimize the crystal structure. All atomic posi-
tions were fully relaxed until the Hellmann–Feynman
force on each atom was within 0.01 eV Å−1.
To model the interface structure between ZBTO and

the metal, the superlattice-like structure used here con-
sisted of a combined a-ZBTO and metal (a-Al/a-Ti)
supercell created via the following sequential processes: (i)
a-ZBTO (a-metal) based on a (2 × 2 × 8) a-Z1-xBxTO with
x= 0.312 supercell of 160 atoms (an a-Al/a-Ti supercell
of 64 atoms) was independently generated by first-
principles melt-quenching (MQ) MD calculations. Until
the total energy converged, MQ-MD calculations for

ZBTO (metal) were repeated several times for melting at
4000 (3000) K and quenching at rates from 1.0 K fs−1 to
0.5 K fs−1 to temperatures from approximately 4000
(3000) K to 10 K. (ii) After the a-ZBTO and a-metal
structures were combined, simulation annealing was
conducted from 300 K to 50 K (0.2 K fs−1). This process
was also repeated until the total energy converged. (iii) To
study the diffusion of atoms at the interface while con-
sidering the bulk by fixing 43 atoms in the middle region
of a-ZBTO, a finite temperature MD simulation was
conducted for a long simulation time of 20 ns. The tem-
perature was set at a higher temperature (750 K) than the
experimental temperature (approximately room T) to
accelerate the atomic diffusion in both the ZBTO and
metal layers.

Results and discussion
Effect of the Al metal layer on the ZBTO thin-film layer
Figure 1a, b presents cross-sectional transmission elec-

tron microscopy (TEM) images of a-ZBTO films with Ti
and Al metal layers, respectively. When a Ti-capping layer
is used, the Ti layer is entirely oxidized (Fig. 1a), whereas
with the Al-capping layer, a relatively thin oxide (AlOx)
interlayer forms between the Al and a-ZBTO (Fig. 1b).
The X-ray photoelectron spectroscopy (XPS) depth
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Fig. 1 Formation of oxidized interlayers by metal layers at the interface between metal and ZBTO layers. Cross-sectional TEM images of a Ti-
capped and b Al-capped ZBTO films. XPS depth profile of the ZBTO film with c a Ti layer and d an Al layer.
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profiles of the atomic elements present in the stacked
structures in Fig. 1c, d also show that the entire and thin
oxidized regions in the Ti and Al metal layers, respec-
tively, are consistent with the aforementioned TEM
observations. This difference in oxidation can be easily
understood. Because Ti readily oxidizes even upon simple
exposure to air32, the formation of TiOx on top of a-
ZBTO is likely to be spontaneously caused by both oxi-
dation from the ambient environment and consumption
of oxygen from the underlying ZBTO. On the other hand,
an Al layer is known to form only a very thin and dense
oxide on its surface after exposure to air, which prevents
further internal oxidation33. It is thus reasonable to con-
clude that the AlOx interlayer between ZBTO and Al is
formed by the consumption of oxygen from the under-
lying ZBTO.
Figure 2 shows the O 1 s and Sn 3d XPS spectra of the

reference ZBTO and metal-assisted ZBTO films. While
the spectra from the ZBTO films without a metal layer
were collected from the surface of the films, the spectra
from the ZBTO films with the metal layer were collected
near the metal/semiconductor interface during depth

profiling. All the subpeaks are shown in Fig. S1. The O 1 s
peaks were resolved into three subpeaks centered at 530.2
(O1), 531.2 (O2), and 532.7 eV (O3). The O1, O2 and O3
peaks represent the signals originating from metal-oxygen
bonds, O deficiency, and hydrogen-related bonds,
respectively34. Figure 2a, b shows that the portions of the
O1 and O2 peaks for the reference ZBTO films and
ZBTO films with a Ti layer are nearly identical. In con-
trast, the O2 peak portion increases when an Al metal
layer is applied, from 21.5 to 30.3 %, as shown in Fig. 2b.
The Gibbs free energies of formation (ΔGf) of ZnO, SnO2,
BaO, TiO2 and Al2O3 are −318.4, −520.5, −520.4,
−889.1, and −1582.3 kJ/mol, respectively35. The lowest
ΔGf of Al2O3 means that Al has the strongest oxidation
power compared to ZnO, SnO2, BaO, and TiO2. There-
fore, an AlOx film most likely forms at the Al/ZBTO
interface due to the removal of oxygen from the ZBTO
layer, which in turn significantly induces O deficiency in
the back channel region. On the other hand, the Sn 3d
peaks were also resolved into three subpeaks, as shown in
Fig. 2c, d. The subpeaks at 487.0, 486.3, and 484.8 eV can
be assigned to signals originating from SnO2 (Sn

4+), SnO
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(Sn2+), and metallic Sn (Sn0) bonds36. The increased
portions of the Sn2+ subpeak in the ZBTO films with the
metal layer suggest that the transition of SnO2 to SnO
(Sn4+ + 2e− → Sn2+) may occur due to the electrons
injected from the metal layer. Because the work functions
of Al and Ti are similar at 4.28 and 4.33 eV37, respectively,
the effects of the electron injection by the two metal layers
would be nearly identical. This could be confirmed by the
result that the increase degrees of Sn2+-related subpeaks
in both films with the metal layers are nearly identical.
Note that the oxygen and tin subpeak portions in the

bulk regions, as shown in Supplementary Fig. S2, are nearly
identical regardless of the presence or absence of a metal
layer. The above results indicate that the a-ZBTO channel
with an Al metal layer consists of two regions, a conductive
region on top with a relatively high concentration of free
carriers induced by the O deficiency (n+ layer) and a
relatively unaltered ZBTO bulk region (n layer) on the
bottom, which can itself form a metal-induced n+/n
homojunction within the semiconductor layer.
Furthermore, the Hall effect measurement results showed

that the carrier concentration of ZBTO thin-films was
increased approximately 2 times by the Al metal layer, as
listed in Table 1. This result clearly confirms the effect of
the Al metal layer on the ZBTO thin-films. Additionally, the
increased carrier concentration due to the Al metal layer
(~1016/cm3) is not sufficient to form a degenerate channel,
which is reported to occur through the injection of a large
number of free-electron carriers38. Therefore, a degenerate
channel would not be formed in the ZBTO channel.

First-principles DFT calculations
Although shown in the XPS analysis above, it is fun-

damental to theoretically verify whether, among Al and
Ti, the Al metal layer better removes oxygen atoms from
the back channel at the interface between a-ZBTO and
the metal-capping layer. To do this, first-principles DFT
calculations were applied to study the interface of a-
ZBTO with a metal-capping layer. Here, the interface
structure was modeled by a superlattice-like structure in
which a (2 × 2 × 8) ZBTO supercell of 160 atoms and a
metal (Al or Ti) supercell of 64 atoms were combined (see
Fig. 3a, b). For comparison of the intermixing of atoms for
the two cases of Al and Ti, a finite-temperature molecular
dynamics (MD) simulation was conducted with a long

simulation time of 20 ns at a temperature of 750 K, which
is higher than the experimental temperature, to accelerate
the atomic diffusion in the ZBTO-metal structure (see the
DFT section of Experimental Methods). Based on
the initial (I) and final (F) structures before and after the
finite-temperature MD simulation, the relative trends for
the Al and Ti metals were compared by analyzing the
integrated pair distribution function (IPDF) data before
and after the finite-temperature MD simulation. Figure
3c–e shows the differences (ΔIPDFs) in the average data
per atom for the IPDF between cations (Zn, Ba, Sn and
metals such as Al and Ti) and O for the two cases cal-
culated according to ΔIPDF= IPDF(F) - IPDF(I). Inter-
estingly, the coordination numbers for all of the Zn, Ba,
and Sn cations with O atoms were calculated and found to

Table 1 Hall effect measurement results of the reference
and Al-capped ZBTO thin-films.

TFT Bulk concentration Sheet resistance

ZBTO −7.87 E + 15 104 MΩ/□

ZBTO – with Al layer −1.91 E + 16 5.2 MΩ/□
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Fig. 3 Results of first-principles DFT calculations. Superlattice-like
interface structure combining an a-ZBTO supercell and an a-metal
(a a-Al and b a-Ti) supercell. Here, a-Z1-xBxTO with x= 0.312 is used as
an example. c From the calculated integrated pair distribution
functions (IPDFs) between cation atoms (M= Zn, Ba, Sn, Al, and Ti)
and adjacent O atoms, the difference in the IPDF data between I=
initial structure and F= final structure for both the Al and the Ti metal
cases is plotted according to ΔIPDF= IPDFs(F) - IPDFs(I). In c–e, the
vertical dotted lines are the cation-O bond lengths in the ZnO, BaO,
SnO2, Al2O3, and TiO2 crystals.
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be significantly reduced more by the Al metal-capping
layer than by the Ti metal-capping layer, depending on
the type of cation, similar to the experimental XPS
results. In particular, the ΔIPDFs vary slightly between
the Al and Ti cases for Zn and Sn but dramatically for
Ba (Fig. 3c–e). This means that the highly O-deficient
n+ layer at the interface of the Al-ZBTO back channel
forms because the Al atoms strongly pull the O atoms
from the ZBTO layer to the Al metal layer. The super-
iority of the Al metal can be easily understood to be due
to the greater heat of formation of Al2O3 than that of
TiO2. Therefore, the role of the metal-capping layer in
the formation of the O-deficient region of the a-ZBTO
channel is well characterized in terms of the diffusion of
atoms during the production of the experimental TFT
device.

Electrical characteristics of the thin-film transistors
Figure 4a, b shows the device structure and an optical

micrograph of the ZBTO TFTs with a metal layer. The
metal layer was deposited onto the ZBTO film at half the
length of the channel between the source and drain
electrodes. The transfer curves of TFT devices based on
the reference and metal-assisted ZBTO are shown in Fig.
4c–e, and the extracted transfer parameters are listed in
Table 2. The extracted saturation mobility values with
respect to the gate voltage are shown in Fig. 4f. As
anticipated, the application of a Ti metal layer results in
an increase in the field-effect mobility by approximately
twofold (~53.7 cm2/Vs). This improved mobility of Ti-
assisted TFTs originates from the electrons injected from
the metal layer, as confirmed by the increase in the
Sn2+-related peak in the Sn3d XPS spectra of both metal-
assisted ZBTO films. Unlike the Ti capping case, which
corresponds to the typical field-effect mobility increase
due to the metal-capping method, a further enhancement
is observed in the presence of an Al capping layer with a
remarkable peak mobility outcome of 153.4 cm2/Vs. This
indicates that in addition to the electron injection effect,
the main cause of the significantly improved mobility of
the Al-assisted TFTs is the increase in the effective car-
riers stemming from the highly conductive n+ layer
formed within the ZBTO layer.
For comparison, other conventional oxide semi-

conductor materials were evaluated using an Al metal
layer. Figure 5a depicts a schematic diagram of the elec-
tron injection mechanism from the conduction region to
the bulk region in the active layer. Generally, conventional
oxide semiconductors, such as IZO and ZTO, contain
numerous oxygen-related and disorder defects that act as
electron scattering/trapping centers39. Therefore, for
conventional oxide semiconductors, most of the injected
electrons from the n+ layer could be trapped by various

defects in the n layer (front channel layer), thereby lim-
iting the mobility improvement effect. In contrast, for
ZBTO, oxygen-related and disorder defects are effectively
reduced by the incorporation of BTO27. It has been
reported that incorporation of BTO significantly decrea-
ses the band tail states or oxygen-related defects. As a
result of the decreased defect density in ZBTO, most of
the generated or injected electrons from the n+ layer can
be transported without serious scattering/trapping27.
Therefore, an ultrahigh field-effect mobility can be
achieved when using ZBTO as an active layer. Figure 5b
indeed indicates a lower mobility improvement due to the
Al metal layer for the conventional oxide IZO and ZTO
TFTs compared to the ZBTO TFTs. Individual transfer
curves of metal-assisted conventional oxide TFTs are
shown in Supplementary Fig. S3, and the extracted
transfer parameters are listed in Supplementary Table S1.
For comparison, Fig. 5c shows the field-effect mobility
outcomes of all TFTs.

Low-frequency noise (LFN) characterization of the thin-film
transistors
To probe the prevailing carrier transport mechanisms,

we measured the 1/f noise of the ZBTO and Al-assisted
ZBTO TFTs at VDS= 1.0 V and plotted the current noise
spectral densities (SID) versus the frequency, as seen in the
inset of Fig. 6a. The slopes for both devices under all bias
conditions obey the typical 1/f noise theory40. Figure 6a
shows the normalized current noise spectral density (SID/
ID

2) as a function of │VGS − VTH│ at 80 Hz. The slope
value of −1.5 for the ZBTO TFTs indicates that the
electrons are scattered by coherent trap sites composed of
bulk traps and interface traps, as illustrated in Fig. 6c. In
contrast, the slope value of almost −2 for the Al-assisted
ZBTO TFTs indicates that the electrons are scattered
mainly by interface traps, as depicted in Fig. 6d40–44. As a
result of the reduced bulk trap sites, the Al-assisted ZBTO
TFTs show fairly outstanding transfer characteristics
compared to the ZBTO TFTs. The improved charge
transport may originate from the excess electrons induced
by the Al metal layer, which could passivate the bulk
defect states in the ZBTO channel through the Al
assisting layer. For further confirmation of transport
mechanisms, the slopes of input-referred noise (SVG) were
compared (see Fig. 6b).

SVG ¼ SVFB 1þ αμeffCox VGS � VTHð Þ
h i2 ð1Þ

Here, SVFB is the flat-band voltage noise density, α is the
Coulomb scattering coefficient, μeff is the effective mobi-
lity, and Cox is the dielectric capacitance per unit area. The
slope of the ZBTO TFTs shows a tendency similar to that
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in Eq. (1), suggesting that the carrier transport is influ-
enced by the mechanism of bulk trap scattering42.

SVG ¼ q2 � k � T �NT

C2
ox �W � L � γ � f ð2Þ

In this equation, q is the electronic charge; kT is the
thermal energy; NT is the oxide trap density;W and L are the
channel width and length, respectively; γ is the attenuation
coefficient; and f is the frequency45. In contrast, the slope of
the Al-assisted TFTs is zero, coinciding with Eq. (2), which
corresponds to the interface-trap-dominant model.
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Reliabilities of the thin-film transistors
Figure 7a shows the device reliability test results for the

reference and metal-assisted ZBTO TFTs under negative
bias stress (NBS) and positive bias stress (PBS) conducted
with a fixed gate voltage VGS = ± 20 V and a drain voltage
VDS= 0.1 V for 3600 s. Additionally, the amounts of
threshold voltage shift under NBS and PBS are listed in
Table 3. Refer to the detailed transfer curves of ZBTO
TFTs and metal-assisted ZBTO TFTs in Fig. S4. The
threshold voltage shifts during the bias stress test gen-
erally depend on the amount of trapped charge in the
front channel region near the semiconductor/gate
dielectric interface46,47. Despite the conductive region

induced in the back channel due to the formation of the
AlOx interlayer, the metal-assisted ZBTO TFTs exhibit
relatively stable behavior, comparable to the reference
devices. This suggests that the front channel is relatively
less affected by the presence of the metal layer, as pre-
dicted from the aforementioned thin-film characterization
results (e.g., XPS).
The long-term stability of the Al-assisted ZBTO TFTs

was evaluated, as shown in Fig. 7b. Figure 7c shows the
extracted transfer parameters as a function of the air
exposure time. The electrical characteristics are well
preserved over a period of 90 days under ambient air. The
device performance enhanced by the application of the
metal layer does not significantly degrade, which suggests
that stable operation of the TFTs is possible with good
long-term operational reliability.
For application to high-resolution displays and highly

integrated circuits, the corresponding TFT size should be
reduced. Accordingly, the possibility of downscaling the
Al-assisted ZBTO TFTs using photolithography and a lift-
off process was investigated. The channel layer width/
length of the downscaled (DS) device was reduced from
800/200 to 100/50 μm. Supplementary Fig. S5 exhibits the
transfer curves of DS-ZBTO TFTs with and without an Al

Table 2 Extracted transfer parameters of the reference,
Ti-assisted, and Al-assisted ZBTO TFTs.

ZBTO TFT µFE (cm
2/Vs) S.S. (V/dec) Vth (V) Ion/Ioff

reference 20.8 ± 2.70 0.32 ± 0.06 −0.05 ± 0.29 ~109

with Ti layer 53.7 ± 8.60 0.44 ± 0.08 −1.85 ± 0.42 ~109

with Al layer 153 ± 16.6 0.37 ± 0.07 −0.77 ± 0.35 ~109
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metal layer. It was found that the field-effect mobility of
the Al-assisted DS-ZBTO TFTs was improved to more
than ~120 cm2/Vs without large changes in the other
transfer parameters. Although TFT fabrication by the
lithography process requires further optimization, such as
of the area ratio of the metal layer to the channel, the
aforementioned effect of an improved mobility due to the
metal layer was clearly confirmed for TFTs with a small
feature size.
Finally, the extracted field-effect mobility and channel

length (device scale) in previously reported works and this
work are depicted in Fig. 8. Compared to other works,
this work represents remarkably improved mobility
(~153 cm2/Vs) without a stabilization or postannealing
process. Moreover, most of the previous reports that
adopted the metal capping process for enhancing the field-
effect mobility were limited to TFTs with relatively long
channel lengths. In the case of scaled-down TFTs, only a few

papers have reported the metal capping process, with rela-
tively low field-effect mobilities (>50 cm2/Vs). However, our
work shows greatly enhanced field-effect mobility
(~120 cm2/Vs) even for scaled-down TFTs (L= 50 μm).
Consequently, we suggest that high-performance a-ZBTO
TFTs with Al capping layers could be good candidates for
future high-resolution display applications.

Conclusions
In summary, we investigated the effects of metal-

capping layers on ZBTO films and the associated thin-
film device characteristics. The application of a highly
oxidizing metal, such as Al, to ZBTO results in the
creation of an AlOx interlayer, accompanied by the for-
mation of an oxygen-deficient interfacial (n+) layer in the
n-channel ZBTO film underneath, leading to an n+/n
homojunction structure. This results in only an increase
in the free carrier concentration in the front ZBTO
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Fig. 6 Low-frequency noise (LFN) analyses of ZBTO TFTs with and without a metal layer. a Log-log plot of the normalized noise spectral
density (SID/ID

2) against VGS-VTH; the inset shows the drain current noise spectral densities (SID) for the reference and Al-assisted ZBTO TFTs. b Voltage
spectral density (SVG) versus gate overdrive voltage. Schematic diagram of the carrier transport mechanism of the c reference and d Al-assisted
ZBTO TFTs.
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channel layer with sufficiently limited scattering centers,
remarkably enhancing the field-effect mobility of the
corresponding TFTs. In addition, first-principles DFT
calculations were utilized to determine the oxidation

tendency of Al2O3 relative to that of TiO2, which is the
driving force behind the formation of the highly con-
ductive n+ layer in the ZBTO layer. As a result, the Al-
assisted ZBTO TFTs achieved a noticeably enhanced
field-effect mobility of 153.4 cm2/Vs, far superior to those
of other Al-assisted conventional oxide TFTs. From 1/f
noise measurements and characterization of ZBTO and
Al-assisted ZBTO TFTs, we found that the carrier
transport of ZBTO TFTs with the Al assisting layer is
enhanced due to the reduced bulk trap sites. The effect of
the mobility improvement was also confirmed in small-
sized ZBTO TFTs with an Al layer fabricated by litho-
graphy. Moreover, reliability tests indicate that the front
channel of the metal-assisted devices is relatively less
affected. These results suggest that the formation of a
metal-induced oxide n+/n homojunction for ultrahigh
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Table 3 ΔVTH values of the reference, Ti-assisted, and
Al-assisted ZBTO TFTs after NBS and PBS tests.

NBS

TFT ZBTO ZBTO with Ti layer ZBTO with Al layer

Δ Vth (V) −0.12 −0.46 −0.13

PBS

TFT ZBTO ZBTO with Ti layer ZBTO with Al layer

Δ Vth (V) 0.05 0.36 0.09
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electron mobility transistors could be a cost-effective and
useful route to replace current low-temperature poly-Si
(LTPS) TFT technology.
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