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Abstract
Conductive bridging random access memory (CBRAM) has been considered to be a promising emerging device for
artificial synapses in neuromorphic computing systems. Good analog synaptic behaviors, such as linear and symmetric
synapse updates, are desirable to provide high learning accuracy. Although numerous efforts have been made to
develop analog CBRAM for years, the stochastic and abrupt formation of conductive filaments hinders its adoption. In
this study, we propose a novel approach to enhance the synaptic behavior of a SiNx/a-Si bilayer memristor through Ge
implantation. The SiNx and a-Si layers serve as switching and internal current limiting layers, respectively. Ge
implantation induces structural defects in the bulk and surface regions of the a-Si layer, enabling spatially uniform Ag
migration and nanocluster formation in the upper SiNx layer and increasing the conductance of the a-Si layer. As a
result, the analog synaptic behavior of the SiNx/a-Si bilayer memristor, such as the nonlinearity, on/off ratio, and
retention time, is remarkably improved. An artificial neural network simulation shows that the neuromorphic system
with the implanted SiNx/a-Si memristor provides a 91.3% learning accuracy mainly due to the improved linearity.

Introduction
As computing paradigms are shifting from a central

processing unit-centric system to a data-centric system, a
new computing architecture is demanded to overcome
the performance limitations in the present von Neumann
architecture1–5. Bioinspired neuromorphic computing is
one of the alternatives to von Neumann computing.
Emerging devices for artificial neurons and synapses as
basic building blocks in neuromorphic systems have been
extensively studied because many of them have high
potential in terms of power consumption, scalability, and
computation speed in comparison with complementary
metal–oxide–semiconductor (CMOS)-based neurons and
synapses4,6–9. The ideal analog behavior of artificial

synapses is one of the key factors for high learning
accuracy of neuromorphic systems based on artificial
neural network algorithms. Linear and symmetric synapse
conductance updates under identical spikes as well as a
large on/off ratio are required to implement ideal analog
synaptic devices10.
Recently, several different approaches, such as flash

memory, phase change memory (PCM), ferroelectric field
effect transistors (FeFETs), and resistive random access
memory (ReRAM), have been investigated to realize ideal
analog synaptic devices. Multibit flash memory is one of
the promising candidates, but the scaling issue due to its
large footprint is a concern. Additionally, the program-
ming speed and endurance of NAND flash memory
cannot yet meet the requirements of neuromorphic
applications10. In many studies, PCM has been demon-
strated to act as analog synapses due to its high speed and
good scalability, but the inherently high nonlinearity of
the synapse weight update, especially in depression, poses
a challenge to the implementation of ideal analog
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behavior11. An FeFET is another promising solution to
achieve high linearity of the synapse weight update because
the device conductance is modulated through a gate elec-
trode that does not interfere with a current-conducting
channel12,13. However, the implementation of FeFETs
using conventional perovskite-type oxide materials finds
difficulty in securing CMOS process compatibility14,15.
ReRAM, where conductive filaments constitute con-

ductive metal ions or oxygen vacancies in the resistive
switching layer, provides excellent performance in terms
of scalability, low switching current, endurance, and
retention. Furthermore, the simple fabrication process
and CMOS back-end of line compatibility make it a
promising candidate for artificial synapses in neuro-
morphic systems, as reported in the literature16. Among
various types of ReRAM devices, conductive bridging
random access memory (CBRAM) has been suggested for
artificial synapses because it has high potential, such as a
large on/off ratio, a long retention time, and high speed16.
However, the abrupt conductance changes due to the
bridging and rupture of a nanoscale conductive filament
cause highly nonlinear and asymmetrical conductance
responses. This makes it difficult for CBRAM to be applied
as ideal analog synapses in a neuromorphic system.
Various approaches have been proposed to suppress the

abrupt nature of the filamentary switching of CBRAM
devices: (i) multiple weak filament implementation, (ii)
internal current limiting, and (iii) filament modulation.
For implementation of multiple weak filaments, nanoscale
metal particles are incorporated into a switching layer by
cosputtering of metal and dielectric materials so that
spatially uniform conduction can be formed between
active metal-rich and active metal-poor regions through
conductive multifilaments5. Annealing an active metal on
a switching layer can be another approach to produce
multiple weak filaments. The metal ions diffuse into the
switching layer by annealing, achieving stochastic multiple
conduction channels17. As multiple conductive ion
transport channels are preformed in the switching layer in
the case of multiple weak filaments, this approach sup-
presses abrupt strong filament formation and provides
more reliable and gradual switching4. In the internal cur-
rent limiting case, ReRAM includes a resistive layer as an
internal current limiter in series with a switching layer18.
The internal current limiter helps suppress the abrupt
increase in the device current through the switching layer
during the set transition via a so-called voltage divider
effect4,19. In the filament modulation method, the diameter
of the conductive filament is gradually adjusted in the set
mode by additional voltage pulses. By controlling the
conductive filament size successively, the device shows a
gradual conductance change20.
In this study, we demonstrate a novel approach to

enhance the analog behavior of a (Ag top electrode (TE))/

SiNx/a-Si/(p
++ Si bottom electrode)-based CBRAM

device through Ge implantation. Depending on the vol-
tage regime, the CBRAM device exhibits binary or analog
switching behavior. Ge forms an ideal solid solution
blended with Si. Therefore, the Ge implanted into the a-Si
layer does not form any second phase materials. Fur-
thermore, Ge has a higher atomic weight than Si, so it
generates more defects by implantation. These are the
main reasons why we chose Ge as the implantation ion.
The process of implantation in resistive switching

devices has been introduced for various purposes. Some
metal oxides, such as CuOx and HfOx, were synthesized at
low temperature by implanting oxygen21,22. Metal or gas
ions, such as oxygen, nitrogen, Au, Zr, and Ti, were also
implanted in an effort to improve the resistive memory
parameters, including the retention time, device yield,
variations and forming voltage23–25. Unlike previous
research, in this study, we introduced the implantation
process to adjust the conductance of a current limiting
layer and metal cluster morphology. If a sufficiently high
voltage greater than the forming voltage is applied, the
device becomes electrically formed and exhibits abrupt
binary switching. By contrast, when a low voltage below
the forming voltage is applied, the device shows a typical
analog memristor behavior. In this case, the a-Si layer
serves as an internal current limiter to suppress the abrupt
strong filament formation, and the SiNx top layer serves as
a switching layer. The SiNx/a-Si bilayer device shows
analog behavior, but the nonlinearity of the conductance
update, on/off ratio, and retention time are not desirable.
In an effort to enhance the analog behavior of the
CBRAM device, we introduced Ge implantation into the
a-Si underlayer to modify the conductance and surface
structure of the a-Si layer. Because of Ge implantation, the
analog behavior in terms of the linearity, on-off ratio, and
retention time was remarkably enhanced. We discuss the
origin of the enhanced analog behavior through implan-
tation. Last, we also perform an MNIST recognition
simulation in memristor-based neural networks with
consideration of the synapse nonlinearity. The implanted
CBRAM device provided a learning accuracy of 91.3% due
to its enhanced linearity of the synapse weight update,
whereas the unimplanted device exhibited only a 62.8%
accuracy.

Experimental
Implantation process
Ge implantation was conducted using a 400-kV ion

implanter located at the Korea Institute of Science &
Technology (KIST). The implanter consists of a high
voltage generation part, a source withdrawing part, an ion
acceleration part, an ion beam line, and an ion chamber.
Amorphous Si thin films on crystalline Si wafers were
irradiated by Ge ion beams accelerated with a 70-kV
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voltage at a fluence of 1 × 1016 atoms/cm2 at room tem-
perature. The ion flux was measured by a Faraday cup and
adjusted to be under 50 nA/cm2·s.

Device fabrication process
The memristor synapse was designed to have a via-hole-

type structure consisting of (Ag TE)/SiNx/a-Si/(p
++-Si

bottom electrode). Amorphous Si of a 78-nm thickness
was deposited by low-pressure chemical vapor deposition
(LPCVD) (SHF-150L) on Si wafers. In an LPCVD
deposition process, SiH4 gas was supplied at a 60-sccm
flow rate, and the process pressure and temperature were
set to 150 mTorr and 550 °C, respectively. Ge ions were
then implanted in the amorphous Si layer. A SiNx thin
film of 100 nm thickness was deposited on the a-Si layer
as an insulating layer by plasma-enhanced chemical vapor
deposition (PECVD). The SiNx film was selectively etched
in a 1:6 BOE solution with a photoresist mask having
circular hole arrays patterned by photolithography. By this
process, the via-hole structure on the a-Si layer was pre-
pared. After removing the photoresist, another SiNx thin
film of a 9–20-nm thickness as a switching layer was
deposited by PECVD. Last, a Ag TE of a 300-nm thickness
was prepared by a lift-off process. The Ag electrode was
deposited by a thermal evaporator.

Current–voltage characteristics, pulse test, and retention
test
Electrical characterization was performed with a source

measure unit (Keithley 236) connected to a probe station.
The direct current–voltage (I–V) characteristic curves of
the devices were obtained under repetitive voltage sweeps
of 0→+5 V and 0→−5 V. The scan speed was set to
0.098 V/s by adjusting the measurement delay time. The
compliance current was set at 10mA for all DC sweep
measurements. The memristor devices were also operated
under repetitive voltage pulse signals to observe potentia-
tion/depression. For the implanted devices, the amplitudes
of the potentiation/depression pulses were 7 V/−3 V with a
10-ms pulse width, and the readout pulse was 1 V with a
10-ms pulse width; for the unimplanted devices, the
amplitude of the readout pulse was 2 V with the same pulse
width. To determine the synapse retention time, the con-
ductance of the synaptic device was measured as a function
of elapsed time after 500 voltage pulses with a 100-ms
width and various voltages (5, 6, 7 V). Endurance of
potentiation/depression was tested at a 7 V/−4 V write
voltage and a 1 V read voltage for 500 cycles.

Cross-sectional TEM (XTEM), scanning transmission
electron microscopy (STEM), and energy dispersive X-ray
spectroscopy (EDX)
TEM samples were prepared by using a focused ion

beam (FIB) technique (Hitachi-NX5000). Through the

FIB process, the device samples were thinned to have
adequate width for TEM observation. The FEI equipment
(TitanTM 80–300) was used for both conventional TEM
and STEM observations. These analyses were carried out
to visualize the cross-sectional area of the memristor
devices. Through TEM and STEM, the structures of the
devices and Ag nanoclusters embedded in active layers
were observed. Moreover, the distribution of the Ge
atoms implanted in the a-Si layer was characterized
using EDX.

TRIM simulations
Full-cascade Monte Carlo simulations of Ge implanta-

tion were performed via a TRIM software package (SRIM
2003 ver.13). The spatial distributions of Ge atoms and
vacancy defects along the depth were calculated by TRIM
simulations. For the simulations, the stack of a-Si
(78 nm)/c-Si wafer (semi-infinite) was used, and the
densities of the LPCVD a-Si and Si wafer layer were set to
be 2.285 and 2.329 g/cm3, respectively26. The acceleration
voltage was fixed at 70 kV, and the input values for the
displacement energy and lattice binding energy were 12
and 2 eV, respectively. The vacancy concentration along
the depth was determined from the number of vacancies
created per implanted ion (vi) in the TRIM simulation by
the following equation.

Vancancy concentration ¼ vi
vacancies

ions

� �

´ fluence
ions
cm2

� �
´

1

ρ atoms
cm3

� � ´ 0:01;

where fluence is the number of implanted ions per unit
area and ρ is the atomic density of the substrate. vi is
calculated by subtracting replacement collisions from
target displacements in the simulation. The factor of 0.01
is used to account for the self-annealing effect. Approxi-
mately 99% of the implantation damage is instantly
recovered during implantation at room temperature,
resulting in only 1% damage27,28.

MNIST pattern recognition simulation
An MNIST pattern recognition simulation was per-

formed based on a memristor-based neural network with
consideration of the synapse update model, which was
experimentally determined in potentiation and depression
under repetitive identical pulses. The artificial neural
network algorithm model chosen for the simulation was a
multilayer perceptron (MLP) with three neuron layers: an
input layer with 784 neurons, a hidden layer with 128
neurons, and 10 output neurons for different labels.
Information from the inputs flows into the next neuron
layer via the fully connected synapses with different
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weight strengths, and the collected data in the neurons are
again transmitted to the next layer after performing
nonlinear encoding, e.g., the rectified linear unit function.
In the output stage, a softmax function produces the
normalized probability distribution of each output value.
For the training, batch-type learning was performed using
60,000 MNIST training datasets (batch size 400) and
repeated 100 times (100 epochs). The cost of the neural
network was calculated utilizing a cross-entropy equation,
and the synapse weight was updated based on a gradient
descent method. To put experimental synaptic device
characteristics into the simulation, the nonlinearity in the
analog conductance change with a limited number of
states was considered.

Results and discussion
Current–voltage characteristics of SiNx/a-Si bilayer devices
and influences of implantation
The measurement configuration and fabrication process

flow of the SiNx/a-Si bilayer memristor sandwiched by a
Ag electrode and a heavily doped p++ Si wafer are illu-
strated in Fig. 1a, b, respectively. Ge ions with a dose of
1.0 × 1016 cm−2 were implanted into a-Si thin films before
the deposition of SiNx. For a comparative study, a device
of the same device structure but without implantation was
fabricated. When a high voltage sufficient for forming was
applied, both devices exhibit a typical binary switching
behavior regardless of implantation (Fig. S1). The
implanted device shows a slightly higher forming voltage
(13.2 V) than the device with no implantation (11.5 V), but
the set and reset voltages of both devices lie in the similar
range of 3.0–3.5 V in absolute value. They all show abrupt
switching behavior, indicating that the formation of a
strong conductive filament is the main mechanism for
switching. In contrast, when the voltage was swept in a

low voltage regime from 0 to +5 V and from 0 to −5 V
repetitively, a gradual change in the device current
depending on the sweep direction was observed, as shown
in Fig. 2a. Hysteresis in a voltage–current sweep curve
pinched at the origin is a fingerprint of a memristor
device. The implanted device shows two orders of mag-
nitude higher current values than the unimplanted device,
and the current–voltage curve is relatively symmetrical,
whereas the unimplanted device shows hysteresis only in
the positive bias region. The same voltage sweep testing
was performed for the devices without a SiNx thin film,
and the results are shown in Fig. 2b. The unimplanted
device exhibits an asymmetric Schottky contact diode
curve, where the carrier injection barrier heights under
forward and reverse biases are different29. In this case, the
contact barrier height under forward bias appears to be
lower than that under reverse bias. A more detailed dis-
cussion is presented in supplementary information (Fig. S2).
The current–voltage curve of the implanted device was

substantially influenced by the Ge implantation, as shown
in Fig. 2a. The current level was increased by approxi-
mately two orders of magnitude, similar to the cases with
the SiNx thin film. Furthermore, the current–voltage
curve became more symmetrical. High-energy particles
implanted into materials induce structural defects in bulk
materials, such as low-dimensional defects of vacancies
and voids, which serve as deep trap states, resulting in
increased conductance through trap-assisted tunneling30.
After Ge implantation into the a-Si thin film, a XTEM
image was taken and is presented in Fig. 2c. The XTEM
image shows that the top surface region of the crystalline
Si wafer amorphized due to the incident high energy Ge
ions. The Si wafer from the original a-Si/c-Si interface to a
depth of 32 nm transformed into the amorphous phase
with the implantation. The Ge ion depth profile was

Fig. 1 Fabrication of SiNx/a-Si bilayer memristors. a Schematic view of a memristor device with a via-hole structure. b Fabrication process flow of
SiNx/a-Si memristor devices. The implanted device underwent Ge implantation at a dose of 1.0 × 1016/cm2. The first SiNx film is for insulating with a
100-nm thickness, and the second SiNx film is for switching with an ultrathin thickness <20 nm.
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simulated using a software package (TRIM) and com-
pared with the EDS result taken in the TEM instrument.
Both results are in good agreement, as shown in Fig. 2d.
The vacancy concentration along the depth was simulated
using TRIM and is also presented. The peak of the
vacancy concentration lies in a shallower region than that
of the Ge atoms. Note that the vacancy concentration
even near the surface of the Si wafer (23% at the 3.8 nm
depth) is substantial, whereas the Ge concentration
(0.05% at the 3.5 nm depth) is negligible in the same
region.
The analog synapse behavior of the bilayer memristor

devices was investigated by applying consecutive trian-
gular voltage pulses in the positive and negative bias
regions, as shown in Fig. 3a, b. The unimplanted device
shows gradual conductance changes only in the positive
bias region, whereas the implanted device exhibits gradual
conductance changes in both the positive and negative
bias regions. The conductance (current) level of the
implanted device is much greater than that of the unim-
planted device, as expected from the current–voltage
sweep curves in Fig. 2. The gradual conductance update
behavior with increasing number of pulses is more clearly
observed in the voltage–current–time graph (V–I–t)
presented in Fig. 3c, d. The gradual conductance changes
with repetitive voltage sweeps are a typical behavior of
analog synaptic devices emulating a biological synapse.

The conductance increase and decrease with repetitive
voltage pulses can be viewed as potentiation and depres-
sion in a biological synapse17.
Gradual conductance changes with repetitive voltage

pulses are very rarely reported in CBRAM devices with a
strong conductive filament. The formation and rupture of
a strong filament during device operation result in abrupt
conductance changes in general11. In this regard, the
gradual conductance changes of the bilayer devices are
very interesting results. Many research efforts have been
made to fabricate analog CBRAM memristors. The for-
mation of weak multifilaments and suppression of a
strong filament are key directions for analog memristor
devices. Blending of metal and dielectric materials by
codeposition or high-temperature annealing is one way to
induce multifilament formation, as reported in the lit-
erature5,17. Suppression of abrupt current increases dur-
ing the reset-to-set transition is another approach. This
can be realized by setting a compliance current; the
amount of the compliance current determines the resis-
tance in the set state, i.e., the size of the conductive fila-
ments. Therefore, multiple resistance levels can be
obtained by varying the compliance current values. The
compliance current can also be implemented by internally
including a resistive layer of a suitable resistance4,19. In
this case, the resistance of the self-compliance layer
should lie between the set and reset resistances for

Fig. 2 Modulation of electrical conductances by ion implantation. Characteristic current–voltage curves of a an SiNx/a-Si bilayer memristor
device and b an a-Si single layer device with and without implantation. The voltage was swept repetitively following the sequence 0→+5→ 0→
−5→ 0. c XTEM image of an implanted a-Si on a p++ crystalline Si wafer. d Ge and defect (vacancy) distributions simulated by TRIM, and Ge atomic
fraction determined by EDX.
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effective suppression of the abrupt current increase upon
the set transition. To investigate the origin of the SiNx/a-
Si bilayer device behavior, a TEM study was conducted.

Ag nanocluster formation and device size dependence
XTEM images of the unimplanted and implanted

devices after potentiation were taken and are shown in
Fig. 4a, b. The potentiation for both devices was per-
formed by applying 500 repetitive pulses of a 7.0-V
amplitude and a 100-ms width. Ag nanoclusters were
observed to be distributed within the thin layer of SiNx in

both cases, but the sizes and distributions of the Ag
nanoclusters are very different. No Ag nanoclusters are
observed in the a-Si underlayer. In the unimplanted
device, the Ag nanoclusters are dominantly located at the
SiNx/a-Si interface with smaller nanoclusters within the
SiNx thin film. By contrast, in the implanted device, pre-
ferred sites for the Ag nanoclusters are not observed, and
the Ag nanoclusters are randomly distributed within the
SiNx film. The STEM images at higher magnification
more clearly reveal the existence of Ag clusters, as shown
in Fig. 4c, d. Repetitive voltage pulses induce the

Fig. 3 Analog memristor behaviors. Memristor currents under five consecutive DC voltage sweeps of a SiNx/a-Si memristor device a without
implantation and b with implantation. Voltage and current curves of a, b in temporal space for c the unimplanted and d implanted devices (V–I–t
curves).

Fig. 4 Ag nanocluster distributions in the switching layers. XTEM images of a unimplanted and b implanted devices. The SiNx switching layers
with Ag nanoclusters are denoted by dashed rectangles. STEM images of the Ag nanoclusters within the SiNx layer for the c unimplanted and d
implanted devices. The brighter particles with strong contrast in the SiNx layer are the Ag nanoclusters.
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migration of Ag nanoclusters in the SiNx thin layer. It is
well known that Ag migration is more facilitated in
dielectric materials such as SiNx and SiOx than in a-Si due
to the differences in diffusivity31,32. For this reason, no Ag
nanoclusters in the a-Si underlayer are observed, and the
a-Si underlayer serves as a diffusion barrier for Ag in both
devices. At the same time, the underlayer a-Si layer works
as an internal resistor to suppress abrupt current changes
caused by set switching.
The TEM results reveal that the current flow is not

dominated by one strong filament but is formed by the
randomly distributed Ag nanoclusters in the SiNx layer.
The conductance changes with repetitive pulses and the
retention time are considered to be correlated with the Ag
nanocluster morphologies. The size of the Ag nanoclus-
ters densely distributed at the SiNx/a-Si interface is
5.91 nm (±1.37 nm) on average. The preferred formation
of Ag nanoparticles at the interface of a dielectric and Si
has been reported in the literature and is considered to be
related to the stress induced during thin film deposition of
PECVD SiNx on crystalline Si31,32. The preferred Ag for-
mation at the interface seems to deplete Ag in the center
zone of the SiNx film along the depth. Near the Ag TE
region, small Ag nanoclusters with an average size of
2.02 nm (±0.62 nm) are observed. By contrast, the Ag
nanoclusters in the case of the implanted device with
potentiation are uniformly distributed within the SiNx

film, and the size is 2.84 nm (±1.96 nm) on average, which
is greater than that in the case of the unimplanted device.
Elemental analysis of the nanoclusters in the SiNx film
was performed using high-resolution TEM to confirm
whether the nanoclusters were Ag, as given in supple-
mentary information (Fig. S3). The nucleation and growth
behavior of the Ag nanoclusters might be affected by
implantation-induced defects on the surface of the a-Si
layer. The increased defect density at the top interface
region of the a-Si layer is likely to affect the Ag cluster
formation at the SiNx/a-Si interface. The TEM results
show that the preferred Ag formation at the SiNx/a-Si
interface is greatly suppressed with Ge implantation. It
can be deduced that the increased vacancies at the surface
of the implanted a-Si region, as calculated by the TRIM
simulation, relax the stress with the aid of vacancies
induced by implantation, resulting in suppression of the
preferred Ag nanocluster formation at the interface. The
chemical effect of the implanted Ge element seems to be
negligible since the Ge implanted in the top surface region
of the a-Si layer is <0.1%, and Ag clusters are only
observed in the SiNx layer. Further study is needed to
clarify this.
Detailed analysis of the current–voltage curves shown

in Fig. 2a provides further information about conductive
filament formation. The slopes of the current–voltage
curves of the unimplanted and implanted devices in the

log–log plot were extracted and are shown in supple-
mentary information (Fig. S4 and Table S1). Both devices
show gradually increasing slopes as the applied voltage
increases. Abrupt changes in the slope were observed at a
certain voltage, where it is considered that Ag ions are
injected and nanoclusters are formed. Above the thresh-
old voltage, the current increases very fast, so the slope is
also high in both devices. The average threshold voltages
are 2.9 and 3.2 V, respectively. The threshold voltage is
related to the kinds of active metals and dielectric mate-
rials. The slopes of the on-state devices for both cases do
not exhibit ohmic behavior because the slopes are in the
range of 1–3. This supports that the devices do not have a
strong conductive filament but have multiple weak
filaments.
We also prepared an unimplanted device of a 5.5-nm

thickness similar to the implanted device for fair com-
parison. The unimplanted device with a thinner SiNx

switching layer did not show a memresistive switching
behavior; no repeatable hysteresis in DC current–voltage
curves was observed, as shown below. In XTEM analysis,
silver nanoclusters in the switching layer, even after a
potentiation process, were not observed. It seems that the
thinner switching layer (SiNx) leads to increased leakage,
resulting in reduced silver migration and suppressed
cluster formation. The XTEM image and DC
current–voltage characteristics are presented in supple-
mentary information (Fig. S5).
The random and uniform distribution of the Ag

nanoclusters may lead to interface-type behavior, which
can be confirmed by analyzing devices with various cell
areas. The circular via-hole size was varied from 5 to
20 µm, and the current–voltage characteristics of the
implanted devices are presented in Fig. 5a. The current
flow in filamentary memristor devices is dominated by a
strong filament on the nanoscale; thus the device resis-
tance is insensitive to the cell size33. Unlike strong
filamentary-type devices, the implanted devices exhibit a
clear dependency on the size of the via-hole. If the device
is completely an interface-type device, then the resistance
(R) and the cell diameter (d) obey the relationship R ~ 1/
d2 34,35. Figure 5b shows that the slope of the device
resistance and via-hole size curve on the log–log scale
takes values in the range of 2–3, supporting that the
implanted devices work similarly to the interface-type
device in terms of the device size dependency due to the
multiple weak filaments.

Analog synapse behavior of the unimplanted and
implanted devices
To implement neural network computing hardware

with a high learning accuracy, a low nonlinearity of
synaptic weights with repetitive input pulses and a large
on/off synapse conductance ratio are required36. Synaptic
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potentiation and depression curves for both devices are
presented in Fig. 6a, b. As seen in the figure, for the
nonlinearity parameter in potentiation, both devices have
similar values. However, the synapse conductance of the
unimplanted devices in depression drops more abruptly
with repetitive pulses than that of the implanted devices.
The nonlinearity values of the unimplanted and implanted
devices in potentiation and depression were extracted
using the following equations37.

GP ¼ B 1� e�νPP
� �þ Gmin;

GD ¼ Gmax � B 1� e�νDðP�PmaxÞ
h i

;

B ¼ Gmax � Gmin

1� eνPmax
;

where GP and GD are the conductances for potentiation
and depression, respectively. Gmax and Gmin are the
maximum and minimum conductances extracted from
the experimental results. P and Pmax are the number of
pulses and the maximum pulse number in each mode,
respectively. νP and νD are the nonlinearities of the
memristor conductance update in potentiation and
depression, respectively, and are determined by fitting
the above equations to the experimental results.
The extracted nonlinearities of the conductance update

and the conductance on/off ratios of the unimplanted and
implanted devices with varying number of pulses and
voltage amplitude are provided in Table 1. The on/off
ratio of the implanted device is much greater than that of
the unimplanted device for the overall pulse numbers.
The abrupt decreases in the device conductance in
depression are considered to be related to the volatility of
the memristor devices. This will be more discussed later
in this section. The lower on/off ratios of the unimplanted
device are attributed to a more resistive a-Si underlayer
compared with the implanted device. The resistive
unimplanted a-Si layer, which serves as an internal cur-
rent limiter, limits current flow, resulting in limited Ag

migration into the SiNx layer with multiple voltage pulses.
In contrast, the conductance of the implanted a-Si layer
increases by nearly two orders of magnitude, as shown in
Fig. 2b; thus the current flow increases at a given voltage
compared with the unimplanted device. The increased
current leads to enhanced Ag migration, resulting in
increased Ag clusters in the SiNx thin film and in turn a
higher on/off ratio. The internal current limiter, the a-Si
layer, plays an important role in the realization of the
analog behavior. To investigate the role of the a-Si
underlayer in the switching behavior, we fabricated
memristor devices consisting of Ag/SiNx/p

++ Si with no
a-Si layer, and the current–voltage characteristics are
presented in Fig. S6. If we remove the a-Si layer in the
memristor device, then the current during the set tran-
sition increases abruptly, and strong filamentary mem-
ristor behavior is observed. The size of the conductive
filaments can be adjusted by setting a compliance current,
but the gradual switching behavior was hardly observed.
The threshold switching behavior was observed when the
compliance current was set to be <10-6 A. The compliance
current approach only limits the current during device
operation when the current reaches the set value. In
contrast, when an internal current limiting layer is
inserted, an abrupt current increase can be suppressed by
the voltage divider concept. Furthermore, the on/off ratio
can be adjusted by varying the resistance of the internal
current limiting layer by changing the thickness,
implantation dose, etc. To evaluate the endurance of the
implanted device, 500 cycle tests of repetitive potentiation
and depression were conducted, and the results are pre-
sented in Fig. 6c. The potentiation and depression curves
after every 20 cycles are shown. Although slight changes
in the on/off ratio are observed, the changes in the
potentiation/depression nonlinearity can be neglected.
Cycle-to-cycle and device-to-device variations are also
important factors for synaptic operations. We extracted
these parameters for the unimplanted and implanted
devices and compared them in supplementary

Fig. 5 Device size dependency. a Characteristic current–voltage curves of the implanted devices with varying via-hole size. b R vs. via-hole size of
the implanted devices. The resistance (R) values were determined at a bias of 1.0 V.
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information (Fig. S7 and Table S2). The results show that
the implantation greatly reduced the device variations.

Retention time of the unimplanted and implanted devices
A long retention time is essential for implementation of

long-term memory. We estimated the memory retention
time of the unimplanted and implanted devices after
potentiation. Five hundred pulses with varying voltage
amplitude (5.0, 6.0, 7.0 V) and a 100-ms duration were
applied to the implanted devices, and the conductance

decay was measured as a function of time (Fig. 7). The
retention time parameter was extracted by fitting the
conductance decay curves to the following equation38.

G0 � Gt

G0
¼ A1exp � t

τshort

� �
þ A2exp � t

τlong

� �
þM0;

where G0 and Gt are the conductances at the initial time
and at a certain time t, respectively. τshort and τlong are
short- and long-term retention time constants, which are

Fig. 6 Synpatic potentiation and depression. a Conductance updates of the unimplanted device with varying number of pulses (50, 100, 200, 500).
The write voltages in potentiation and depression were 7.0 and −3.0 V, respectively. The read voltage was 2.0 V in both modes. b Conductance
updates of the implanted device with the same numbers of pulses. The write and read voltages were 7.0 and −3.0 V. The read voltage was 1.0 V in
both modes. c Repetitive potentiation and depression curves with 100 repetitive pulses in each mode. The write voltages were 7.0 and −4.0 V in
potentiation and depression, respectively. The read voltage was 1.0 V in both modes. The potentiation and depression curves of every tenth cycle are
presented. In all cases, the pulse width was set to 10 ms.

Table 1 Nonlinearity factors and on/off ratios of the unimplanted and implanted devices.

Number of pulses Unimplanted device Implanted device

Nonlinearity factor On/off ratio Nonlinearity factor On/off ratio

Potentiation Depression Potentiation Depression

50 4.32 −10.94 1.07 2.61 −7.08 8.80

100 4.08 −14.99 1.08 2.82 −5.78 9.77

200 6.12 −21.87 1.11 2.83 −6.85 12.87

500 12.43 −28.86 1.14 3.10 −6.27 13.50
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extracted from the experimental results. A1, A2, and M0

are parameters for fitting the experimental data to the
above equation. M0 represents the memory retention in
the long term.
In the case of the implanted devices, two kinds of

characteristic time constants of short term (τshort) and
long term (τlong) were determined using the above for-
getting function. For the unimplanted devices, only the
short-term time constant was extracted because of its
high volatility. Selected decay curves of the unimplanted
and implanted devices are presented in Fig. 7a. The long-
term time constants of the implanted devices are in the
range of 103–104 s, and the short-term time constants are
approximately one order of magnitude shorter. A linear
correlation between the retention time and the maximum
conductance for the implanted devices is observed in a
semilog plot, as denoted by the line in Fig. 7b. Only the
short-term time constant is presented for the unim-
planted device, and no clear dependence of the con-
ductance on the retention time was observed in this case.
The maximum conductance values of the implanted
devices were increased by increasing the number of pulses
and the voltage amplitude. The memory decay mechan-
ism in a CBRAM based on dielectric materials is known to
be caused by the surface diffusion of metal elements39.
The repetitive voltage pulses (potentiation) induce the
formation of Ag nanoclusters in the SiNx thin film. The
maximum conductance values after potentiation depend
on the morphology of the Ag nanoclusters, such as the
size and distribution. A greater voltage amplitude and
more pulses lead to greater conductance values, as pre-
sented in Fig. 7b. The lifetime of nanoscale conductive
filaments in CBRAM devices follows Herring’s scaling
law40, where the filament lifetime (τ) increases as a
function of the filament size (d0): τ ~ d0

4 39. The decay of
the conductance is considered to arise from the surface

diffusion of Ag caused by the Gibbs–Thomson effect41–45.
As confirmed by the TEM images in Fig. 4, Ag
nanoclusters are formed and randomly distributed in the
SiNx thin film after potentiation, and the electronic cur-
rent flows via the closely connected nanoclusters. When
the voltage pulses are removed, the size of the Ag
nanoclusters is reduced by surface diffusion, and as a
result, the conductance decreases. The initial abrupt
decay of the conductance in the retention time mea-
surement might be attributed to the fragmentation or
dissolution of small-size nanoclusters into a-Si, and the
subsequent gradual decay is due to that of the larger-size
nanoclusters. This would be a cause of the abrupt decay in
the depression curves of the unimplanted devices. Addi-
tionally, as the maximum conductance increases, the size
of the nanoclusters increases accordingly, resulting in
increased retention time. Both of the time constants
(τshort, τlong) increase with increasing maximum
conductance.
Schematics of the operation mechanisms of the Ag/

SiNx/(unimplanted, implanted) a-Si device below the
forming voltage are illustrated in Fig. 8a–d. The a-Si
underlayer works as an internal current limiter and is
denoted as a resistor. The resistance of the unimplanted
a-Si is approximately two orders of magnitude higher than
that of the implanted a-Si. The two figures at the top
present the Ag morphologies immediately after poten-
tiation, and the two figures at the bottom show them after
a time comparable to the short-term time constant
(τshort). The size of the Ag nanoclusters in the unim-
planted device in the initial stage is smaller than that in
the implanted device. After a certain time τshort, the small-
size Ag nanoclusters are dissolved into smaller ones in
both cases, resulting in an abrupt conductance decrease in
both devices. The Ag nanoclusters in the center zone of
the unimplanted device are depleted by the preferred

Fig. 7 Long term memory retention time. a Selected conductance decay curves after repetitive voltage (7.0 V) pulses with a 100-ms width for the
unimplanted and implanted devices. The applied number of pulses was 500 for the unimplanted device and was 50, 100, 500, and 1000 for the
implanted device. b Retention time constants extracted from the conductance decay curves for the unimplanted and implanted devices with varying
voltage amplitude (5.0, 6.0, 7.0 V) and number of pulses. The voltage pulse width was set to 100 ms.
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formation of Ag nanoclusters at the interface, and the loss
of the long-term memory is attributed to this phenom-
enon. In contrast, the implanted device has large-size Ag
nanoclusters in the layer, maintaining long-term memory.
The unimplanted device has only a short lifetime and
behaves like a short-term memory, whereas the implanted
device has both long and short lifetimes and exhibits both
short- and long-term memory behavior. When a voltage
greater than the forming voltage is applied, a strong fila-
ment is formed across the SiNx/a-Si bilayer; thus a binary
switching behavior is exhibited, as presented in Fig. S1.

Artificial neural network simulation
We performed an artificial neural network simulation

for supervised learning in MNIST classification with
consideration of nonlinear synaptic weight updates with
repetitive pulses, as shown in Table 1. For the simulation,
we adopted an MLP algorithm with one hidden layer,
28 × 28 input neurons, and 10 output neurons. The
nonlinearities of the unimplanted and implanted devices
with varying number of pulses were considered in the
simulation. The detailed hyperparameters used in the
simulations are described in the “Methods” section. When
a memristor-based neural network is trained, the synapse

weights need to be changed gradually and linearly with
consecutive identical voltage pulses in potentiation or
depression46,47. Otherwise, the precise synapse weight
update for error minimization in training can hardly be
achieved. In this regard, in general, a multilevel synapse
with a high linearity for the artificial neural network is
desirable for high accuracy pattern recognition48. As
shown in Table 1, the implanted devices in comparison
with the unimplanted devices have lower nonlinearity
values in both modes (potentiation and depression) and
higher on/off ratios, which are required for multilevel
operations. As a result, the implanted synaptic devices
provide a higher pattern recognition accuracy. The MLP
neural network structure used for the simulation is illu-
strated in Fig. 9a. The learning accuracies of the neural
networks based on the implanted devices improve with
increasing number of conductance states, as shown in
Fig. 9b. The degraded learning accuracy of the unim-
planted devices with >200 conductance states is attributed
to the deteriorated linearity. In contrast, the nonlinearity
values of the implanted devices relatively do not change in
both the potentiation and depression modes. After 100
epochs of training, the unimplanted device only provides a
62.8% learning accuracy with 100 conductance levels,

Fig. 8 Proposed operation mechanism. Schematics of Ag nanoclusters in the SiNx layer immediately after potentiation with multiple voltage pulses
of the a unimplanted devices and b implanted devices. Schematics of Ag nanoclusters at a time comparable to the short time constant (τshort) after
voltage pulses are removed for the c unimplanted and d implanted devices.
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whereas the implanted device presents a 91.3% accuracy
at 500 conductance levels. The achieved learning accuracy
is very comparable to the state-of-the-art results in the
literature36,46,49.

Conclusions
In this study, we demonstrate that the analog memristor

behavior required for neuromorphic computing hardware
can be remarkably improved by Ge ion implantation. The
memristor devices consisting of a SiNx/a-Si bilayer with a
Ag active electrode exhibit poor analog behavior below
the forming voltage: high nonlinearity of synapse weight
updates, a low on/off ratio, and volatility (low retention
time). Ge ion implantation into the a-Si underlayer sub-
stantially modifies the devices by inducing structural
defects and increasing the conductance of the a-Si layer.
This promotes spatially uniform Ag cluster formation in
the switching layer of SiNx, and as a result, the linearity of
the synapse weight updates, the on/off ratio, and the
retention time are greatly improved. The Ag cluster for-
mation was observed to be randomly distributed in the
SiNx layer, as confirmed by TEM. The implanted SiNx/a-
Si bilayer devices are of the interface type, where a uni-
form current flows through nearly the entire cell area. The
synapse weight update model with identical consecutive
voltage pulses was implemented in an artificial neural
network simulation for supervised learning in MNIST
classification. The implanted device provides an improved
learning accuracy of 91.3% with 500 conductance states
compared with the unimplanted device, which shows
only 62.8%.

Acknowledgements
This work was supported by the Korea Institute of Science and Technology
(Grant No. 2E30610, 2E30761), the Korea Institute of Energy Technology
Evaluation and Planning (Grant No. 20163010012450), and the National
Research Foundation of Korea (NRF) (NRF-2019M3F3A1A02072175).

Author details
1Center for Neuromorphic Engineering, Korea Institute of Science and
Technology, Seoul 02792, South Korea. 2School of Electrical Engineering, Korea
University, Seoul 02841, South Korea. 3Division of Materials Science and
Engineering, Hanyang University, Seoul 04763, South Korea. 4Center for
Advanced Analysis, Korea Institute of Science and Technology, Seoul 02792,
South Korea

Conflict of interest
The authors declare that they have no conflict of interest.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Supplementary information is available for this paper at https://doi.org/
10.1038/s41427-020-00261-0.

Received: 24 June 2020 Revised: 19 October 2020 Accepted: 28 October
2020.
Published online: 11 December 2020

References
1. Mead, C. Neuromorphic electronic systems. IEEE 78, 8 (1990).
2. Indiveri, G. & Liu, S.-C. Memory and information processing in neuromorphic

systems. Proc. IEEE 103, 1379–1397 (2015).
3. Ionescu, A. M. Energy efficient computing and sensing in the Zettabyte era:

from silicon to the cloud. IEDM Tech. Dig. https://doi.org/10.1109/
IEDM.2017.8268307 (2017).

4. Lim, S., Kwak, M. & Hwang, H. Improved synaptic behavior of CBRAM using
internal voltage divider for neuromorphic systems. IEEE Trans. Electron Devices
65, 3976–3981 (2018).

5. Jo, S. H. et al. Nanoscale memristor device as synapse in neuromorphic
systems. Nano Lett. 10, 1297–1301 (2010).

6. Burr, G. W. et al. Neuromorphic computing using non-volatile memory. Adv.
Phys. X 2, 89–124 (2016).

7. Suri, M. Advances in Neuromorphic Hardware Exploiting Emerging Nanoscale
Devices (Springer, 2017).

8. Park, S. et al. RRAM-based synapse for neuromorphic system with pattern
recognition function. IEDM Tech. https://doi.org/10.1109/IEDM.2012.6479016
(2012).

9. Woo, J. et al. Improved synaptic behavior under identical pulses using AlOx/
HfO2 bilayer RRAM array for neuromorphic systems. IEEE Electron Device Lett.
37, 994–997 (2016).

10. Chen, W., Tappertzhofen, S., Barnaby, H. J. & Kozicki, M. N. SiO2

based conductive bridging random access memory. J. Electro-
ceram. 39 , 109–131 (2017).

Fig. 9 MNIST recognition accuracy of the memristive neural network. a Schematic illustration of the MLP neural network for an MNIST pattern
recognition test. b Learning accuracy of the neuromorphic system with the analog memristors after 100 epochs of training. The nonlinear synapse
updates in Table 1 are considered in the simulation. The number of conductance states for the analog memristors is varied from 50 to 100, 200,
and 500.

Kim et al. NPG Asia Materials (2020) 12:77 Page 12 of 13

https://doi.org/10.1038/s41427-020-00261-0
https://doi.org/10.1038/s41427-020-00261-0
https://doi.org/10.1109/IEDM.2017.8268307
https://doi.org/10.1109/IEDM.2017.8268307
https://doi.org/10.1109/IEDM.2012.6479016


11. Wan, Q., Sharbati, M. T., Erickson, J. R., Du, Y. & Xiong, F. Emerging artificial
synaptic devices for neuromorphic computing. Adv. Mater. Technol. https://doi.
org/10.1002/admt.201900037 (2019).

12. Min, D.-H., Ryu, T.-H., Yoon, S.-J., Moon, S.-E. & Yoon, S.-M. Improvements
in the synaptic operations of ferroelectric field-effect transistors using
Hf0.5Zr0.5O2 thin films controlled by oxygen partial pressures during
the sputtering deposition process. J. Mater. Chem. C 8, 7120–7131
(2020).

13. Kim, M.-K. & Lee, J.-S. Ferroelectric analog synaptic transistors. Nano Lett. 19,
2044–2050 (2019).

14. Tokumitsu, E. Electrical properties of metal-ferroelectric-insulator-
semiconductor (MFIS)- and metal-ferroelectric-metal-insulator-semiconductor
(MFMIS)-FETs using ferroelectric SrBi2Ta2O9 film and SrTa2O6 SiON buffer layer.
Jpn. J. Appl. Phys. 39, 6 (2000).

15. Ambriz-Vargas, F. et al. Tunneling electroresistance effect in a Pt/Hf0.5Zr0.5O2/Pt
structure. Appl. Phys. Lett. https://doi.org/10.1063/1.4977028 (2017).

16. Subhechha, S. Kinetic defect distribution approach for modeling the transient,
endurance and retention of a-VMCO RRAM. IEEE Int. Reliability Phys. Symp.
https://doi.org/10.1109/IRPS.2017.7936322 (2017).

17. Chen, W. et al. A CMOS-compatible electronic synapse device based on
Cu/SiO2/W programmable metallization cells. Nanotechnology 27,
255202 (2016).

18. Kim, M.-K. & Lee, J.-S. Design of electrodeposited bilayer structures for reliable
resistive switching with self-compliance. ACS Appl. Mater. Interfaces 8,
32918–32924 (2016).

19. Ilyas, N. et al. Analog switching and artificial synaptic behavior of Ag/SiOx:Ag/
TiOx/p(++)-Si memristor device. Nanoscale Res. Lett. 15, 30 (2020).

20. Mahalanabis, D. et al. Incremental resistance programming of programmable
metallization cells for use as electronic synapses. Solid State Electron. 100,
39–44 (2014).

21. Bishop, S. M., Rice, Z. P., Briggs, B. D., Bakhru, H. & Cady, N. C. Synthesis of
resistive memory oxides by ion implantation. MRS Proc. https://doi.org/
10.1557/opl.2012.934 (2012).

22. Nandi, S. K. et al. Room temperature synthesis of HfO2/HfOx heterostructures
by ion-implantation. Nanotechnology 29, 425601 (2018).

23. Liu, Q. et al. Resistance switching of Au-implanted-ZrO2 film for nonvolatile
memory application. J. Appl. Phys. https://doi.org/10.1063/1.3033561 (2008).

24. Liu, Q. et al. Resistive switching memory effect of ZrO[sub2] films with Zr[sup+]
implanted. Appl. Phys. Lett. https://doi.org/10.1063/1.2832660 (2008).

25. Gao, L., Hoskins, B., Zaynetdinov, M., Kochergin, V. & Strukov, D. The effect of Ti
and O ion implantation on the resistive switching in Pt/TiO2−x/Pt devices.
Appl. Phys. A 120, 1599–1603 (2015).

26. Custer, J. S. et al. Density of amorphous Si. Appl. Phys. Lett. 64, 437–439 (1994).
27. Ziegler, J. F. High energy ion implantation. Nucl. Instrum. Methods Phys. Res.

Sect. B Beam Interact. Mater. At. 6, 270–282 (1985).
28. Kinchin, G. H. & Pease, R. S. The displacement of atoms in solids by radiation.

Rep. Prog. Phys. https://doi.org/10.1088/0034-4885/18/1/301 (1955).
29. Di Bartolomeo, A. et al. Asymmetric Schottky contacts in bilayer MoS2 field

effect transistors. Adv. Funct. Mater. 28, 1800657 (2018).

30. Zhao, J., Rebohle, L., Gebel, T., von Borany, J. & Skorupa, W. Bulk-limited
conduction of Ge-implanted thermally grown SiO2 layers. Solid State Electron.
https://doi.org/10.1016/S0038-1101(01)00322-7 (2002).

31. Ishikawa, J. et al. Formation of almost delta-layered nanoparticles in SiO2 thin
film on Si substrate by metal negative-ion implantation. Nucl. Instrum. Methods
Phys. Res. Sect. B Beam Interact. Mater. At. 237, 422–427 (2005).

32. Pugliara, A. Elaboration of Thin Nanocomposite Layers based on Ag Nanopartiles
Embedded in Silica for Controlled Biocide Properties. PhD thesis, Univ. Toulouse 3
Paul Sabatier (2016).

33. Yuan, F. et al. Real-time observation of the electrode-size-dependent evolution
dynamics of the conducting filaments in a SiO2 layer. ACS Nano 11,
4097–4104 (2017).

34. Qu, B. et al. Synaptic plasticity and learning behavior in transparent tungsten
oxide-based memristors. Mater. Des. 129, 173–179 (2017).

35. Younis, A., Chu, D. & Li, S. Evidence of filamentary switching in oxide-based
memory devices via weak programming and retention failure analysis. Sci. Rep.
5, 13599 (2015).

36. Yu, S. Neuro-inspired computing with emerging nonvolatile memorys. Proc.
IEEE 106, 260–285 (2018).

37. Agarwal, S. Resistive memory device requirements for a neural algorithm
accelerator. Int. Jt. Conf. Neural Networks. https://doi.org/10.1109/
IJCNN.2016.7727298 (2016).

38. Wang, Z. Q. et al. Synaptic learning and memory functions achieved using
oxygen ion migration/diffusion in an amorphous InGaZnO memristor. Adv.
Funct. Mater. 22, 2759–2765 (2012).

39. Wang, W. et al. Surface diffusion-limited lifetime of silver and copper nanofi-
laments in resistive switching devices. Nat. Commun. 10, 81 (2019).

40. Herring, C. Effect of change of scale on sintering phenomena. J. Appl. Phys. 21,
301–303 (1950).

41. Mullins, W. W. Theory of thermal grooving. J. Appl. Phys. 28, 333–339 (1957).
42. Wang, Z. et al. Memristors with diffusive dynamics as synaptic emulators for

neuromorphic computing. Nat. Mater. 16, 101–108 (2017).
43. Yi, W. et al. Quantized conductance coincides with state instability and excess

noise in tantalum oxide memristors. Nat. Commun. 7, 11142 (2016).
44. Shukla, N., Ghosh, R. K., Grisafe, B. & Datta, S. Fundamental mechanism behind

volatile and non-volatile switching in metallic conducting bridge ram. In 2017
IEEE International Electron Devices Meeting (IEDM) 4.3.1–4.3.4 (IEEE, 2017).

45. Thomson, W. L. X. On the equilibrium of vapour at a curved surface of liquid.
Lond. Edinb. Dublin Philos. Mag. J. Sci. 42, 448–452 (2009).

46. Shi, Y. et al. Neuroinspired unsupervised learning and pruning with sub-
quantum CBRAM arrays. Nat. Commun. 9, 5312 (2018).

47. Kuzum, D., Jeyasingh, R. G., Lee, B. & Wong, H. S. Nanoelectronic program-
mable synapses based on phase change materials for brain-inspired com-
puting. Nano Lett. 12, 2179–2186 (2012).

48. Suñé, J. Memristors for Neuromorphic Circuits and Artificial Intelligence Applica-
tions (MDPI, 2020).

49. Choi, S. et al. SiGe epitaxial memory for neuromorphic computing with
reproducible high performance based on engineered dislocations. Nat. Mater.
17, 335–340 (2018).

Kim et al. NPG Asia Materials (2020) 12:77 Page 13 of 13

https://doi.org/10.1002/admt.201900037
https://doi.org/10.1002/admt.201900037
https://doi.org/10.1063/1.4977028
https://doi.org/10.1109/IRPS.2017.7936322
https://doi.org/10.1557/opl.2012.934
https://doi.org/10.1557/opl.2012.934
https://doi.org/10.1063/1.3033561
https://doi.org/10.1063/1.2832660
https://doi.org/10.1088/0034-4885/18/1/301
https://doi.org/10.1016/S0038-1101(01)00322-7
https://doi.org/10.1109/IJCNN.2016.7727298
https://doi.org/10.1109/IJCNN.2016.7727298

	Enhanced analog synaptic behavior of SiNx/a-Si bilayer memristors through Ge implantation
	Introduction
	Experimental
	Implantation process
	Device fabrication process
	Current&#x02013;nobreakvoltage characteristics, pulse test, and retention test
	Cross-sectional TEM (XTEM), scanning transmission electron microscopy (STEM), and energy dispersive X-ray spectroscopy (EDX)
	TRIM simulations
	MNIST pattern recognition simulation

	Results and discussion
	Current&#x02013;nobreakvoltage characteristics of SiNx/a-Si bilayer devices and influences of implantation
	Ag nanocluster formation and device size dependence
	Analog synapse behavior of the unimplanted and implanted devices
	Retention time of the unimplanted and implanted devices
	Artificial neural network simulation

	Conclusions
	Acknowledgements




