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A tactile sensor system with sensory neurons and a
perceptual synaptic network based on semivolatile
carbon nanotube transistors
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Abstract
The human sensory system has a fascinating stimulus-detection capability attributed to the fact that the feature
(pattern) of an input stimulus can be extracted through perceptual learning. Therefore, sensory information can be
organized and identified efficiently based on iterative experiences, whereby the sensing ability is improved.
Specifically, the distributed network of receptors, neurons, and synapses in the somatosensory system efficiently
processes complex tactile information. Herein, we demonstrate an artificial tactile sensor system with a sensory neuron
and a perceptual synaptic network composed of a single device: a semivolatile carbon nanotube transistor. The system
can differentiate the temporal features of tactile patterns, and its recognition accuracy can be improved by an iterative
learning process. Furthermore, the developed circuit model of the system provides quantitative analytical and
product-level feasibility. This work is a step toward the design and use of a neuromorphic sensory system with a
learning capability for potential applications in robotics and prosthetics.

Introduction
Over the past half-century, device electronics have been

successfully advancing the Information Age thanks to
consistent performance improvements based on the
downscaling of digital devices that can provide reliable
logic-gate operations, thus benefiting from their robust-
ness to high levels of noise. Recently, research paradigms
have shifted the focus to conventional devices with analog
characteristics, which were previously considered a
drawback. With an innovative computing architecture
used to overcome the energy inefficiency of the conven-
tional von Neumann architecture—typically referred to as
a neuromorphic system1—the analog behaviors of these
devices have begun to be rehighlighted as essential fea-
tures for the implementation of neuromorphic systems2.
Given that the numberless internal states of an analog
device can be adjusted with minimal energy consumption

and given that they can be maintained over the long term
(i.e., they are nonvolatile)3, analog devices can store more
data in a single device with better energy efficiency than
digital devices. Specifically, recent advances in these
analog devices allow them to emulate the functionality of
biological synapses and neurons, while the ability of their
crossbar arrays to solve cognitive tasks related to learning
and recognition has been demonstrated experimentally4–8.
A neuromorphic system will provide energy-efficient
computing power for artificial intelligence that can
replicate cognitive function up to the human brain level.
Interestingly, some analog devices exhibit volatile behaviors

for input stimuli; i.e., they yield a temporal state enhance-
ment that quickly decays to its initial state, which constitutes
one of the essential characteristics of a neuromorphic system.
Early research on this volatile behavior focused on the
emulation of short-term plasticity (STP) in biological
synapses, such as paired-pulse facilitation (PPF)9,10. More-
over, recent studies have emulated biological neurons,
including their capability to integrate temporal input sti-
muli11,12 based on the leaky integrate-and-fire (I&F) neuron
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model13. By exploiting the response of the volatile device
depending on the frequency of the input stimuli, the spatial
or temporal patterns in the input stimuli can be classified.
For example, the integration of sensor devices for various
external stimuli (e.g., pressure, tactile, or visual stimuli) with
processing components (i.e., a volatile analog device as a
sensory neuron) has been proposed to capture the similarities
of the human sensory perception system14–19.
Notably, unlike the volatile or nonvolatile analog devi-

ces mentioned above, a specific device can achieve
switchable volatile/nonvolatile behaviors, as desired20,21.
Although this is not a generic term, we will refer to it as a
“semivolatile” characteristic (in fact, in the case of a two-
terminal-based analog device (memristor), a device with
semivolatile behavior has been referred to as a second-
order memristor22,23). Previous studies of semivolatile
behavior focused only on the capture of a psychological
model related to the human brain’s processes of mem-
orizing and forgetting (i.e., the transition from short-term
memory to long-term learning)20,21. However, more
attention should be paid to the potential of a semivolatile
device to simulate both synaptic and neuronal functions
simultaneously, i.e., the processes of leaky integration (in
the neuron) and learning/recognition (in the synaptic
network) of input stimuli and their emulation with a
single type of device. To date24, neuromorphic systems
have been implemented with an artificial neural network
based on the integration of two different types of devices
(for neuronal and synaptic devices). If the entire artificial
neural network with neuronal/synaptic devices can be
implemented with a single device type, a simpler fabri-
cation process for high-density integration will be

achieved. Consequently, the goal of achieving large-scale
and on-chip implementation of neuromorphic systems
can be realized much sooner than expected.
In this paper, we demonstrate a biorealistic tactile

sensor system wherein both the sensory neurons and
perceptual synaptic network are implemented by a semi-
volatile carbon nanotube (CNT) transistor. The semi-
volatile transistor can switch the operation mode
according to the bias condition. In this way, a single
device type is allowed to play two different roles (neuronal
and synaptic functions) simultaneously. In our tactile
sensor system (Fig. 1), the sensing receptor, action
potential in the axon, sensory neuron that processes
information, and synaptic network for perception learning
are emulated by a tactile sensor, a voltage-controlled
oscillator (VCO) circuit, one neuronal CNT transistor,
and the synaptic CNT transistor array, respectively. The
tactile sensor converts pressure stimuli into resistance
changes. These are then converted to digital signals and
modulated such that their frequencies vary with the
pressure intensity based on the use of the VCO. Subse-
quently, the output of the VCO is delivered to the neu-
ronal CNT transistor that operates in volatile mode. A
leaky-integrating output corresponding to the frequency
of the VCO output is then generated. Finally, the sampled
output of the neuronal CNT transistor is fed to the net-
work of synaptic CNT transistors that operate in a non-
volatile mode, and the learning/recognition processes for
distinguishing the input stimuli pattern are conducted in a
supervised learning manner.

Materials and methods
Fabrication of the tactile sensor
A flexible and transparent polydimethylsiloxane

(PDMS) substrate (thickness of 1 mm) was prepared by
mixing PDMS prepolymer (Sylgard 184A, Dow Corning)
and a curing agent at a ratio of 10:1 by weight. Subse-
quently, the substrate was cleaned by oxygen plasma
treatment, functionalized with a poly-L-lysine solution
(0.1% w/v in H2O, Sigma-Aldrich), and acted as an
effective adhesion layer for the CNTs. The substrate was
thoroughly rinsed with deionized (DI) water and dried
with flowing nitrogen gas. Subsequently, the 99% metallic
CNT network film was directly formed on the PDMS
substrate by spray coating the preseparated metallic CNT
solution (concentration of 0.01 mg/mL) on a hot plate (at
100 °C) followed by thorough rinsing with isopropanol
and DI water. Two Cu electrodes were then formed at
both ends of the CNT network film with silver paste for
reading and inducing electrical signals. Subsequently, a
top PDMS layer was cast with liquid PDMS with a ther-
mal curing agent onto the CNT network film to fabricate
a sandwich-like structure. In the final step, all the layers
were annealed at 100 °C for 1 h.

Fig. 1 Conceptual design of our tactile sensor system compared
with a biological sensor system. In biological systems, pressure
stimuli applied to mechanoreceptors change the receptor potential of
each mechanoreceptor. The receptor potentials initiate action
potentials. Action potentials from multiple nerve fibers combine
through neurons and contribute to information processing. Finally,
the synaptic network in the brain recognizes the input pressure
pattern. Our artificial tactile sensory system is composed of a tactile
sensor device, voltage-controlled oscillator (VCO), neuronal device,
and synaptic network.
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Fabrication of the semivolatile CNT transistor array
CNT transistors were fabricated on p-doped rigid sili-

con substrates with a thermally grown SiO2 layer with a
thickness of 50 nm. We used the local back-gate structure
for the modulation of the channels in the CNT transistors.
To form the local back-gate, a Ti layer with a thickness of
20 nm was deposited by e-beam evaporation and pat-
terned by a subsequent lift-off process. Subsequently, an
Al2O3 layer (thickness of 40 nm) and a SiO2 layer
(thickness of 10 nm) were deposited sequentially to form a
gate insulator by atomic layer deposition. The top surface
of the SiO2 layer was then functionalized with a 0.1 g/mL
poly-L-lysine solution for 20min to form an amine-
terminated layer, which acted as an effective adhesion
layer for the deposition of the CNTs. The CNT network
channel was then formed by immersing the chip into a
0.01 mg/mL 99% semiconducting CNT solution
(NanoIntegris, Inc.) for 8 min at an elevated temperature

of 100 °C. The source/drain electrodes that consisted of Ti
and Pd layers (each 2 nm and 30 nm, respectively) were
then deposited and patterned using conventional thermal
evaporation and a lift-off process, respectively. Finally,
additional photolithography and oxygen plasma etching
steps were conducted to remove unnecessary CNTs other
than those in the channel area, thus isolating the devices
from one another.
In the case of the crossbar array, Cu (thickness of

80 nm) and SiOx (thickness of 150 nm) were sequentially
deposited and patterned for the metal line and interlayer
dielectric layer (ILD), respectively.

Results and discussion
The operational principle of our semivolatile CNT

transistor is based on different hole-movement mechan-
isms in the traps (i.e., interface and surface traps). It has
been shown in other studies25 that typical CNT

Fig. 2 Switchable operation modes of the semivolatile CNT transistor. a Counterclockwise hysteresis of ID according to VG sweep (VD= 2 V and
VS= 0 V). Depending on the presence of trapped holes, the width change in the Schottky barrier at the drain junction results in ID hysteresis.
b Schematics of the trapping/detrapping of holes at the interface/surface traps. c Temporal ID enhancement and decaying behavior when a single VG
pulse is applied. The use of Vhigh= 0.5 V is not sufficient to allow the ejection of all the trapped holes from the interface/surface traps. d The
summarized short-term ID change (ΔGST) and long-term ID change (ΔGLT) according to the Vhigh level. When Vhigh > 2.5 V is applied to the gate of the
CNT transistor, the CNT transistor operates in a nonvolatile mode. Moreover, when Vhigh < 2.5 V is applied, the CNT transistor operates in volatile
mode. e Cumulative ID enhancement behavior based on the application of a train of pulses. Because the CNT transistor operates in volatile mode
(Vhigh= 0.5 V), the final current level (Iend) decays to the initial level (Istart) again (these data are not shown in this graph). f Variation in ΔGST as a
function of fpre enables the differentiation of the pressure intensity.
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transistors have a drain current (ID) hysteresis that is
related to the gate voltage (VG) sweep (Fig. 2a). The
hysteresis is attributed to the trapping/detrapping of holes
at (1) the interface trap through the tunneling process and
(2) the surface trap through the diffusion process in the
lateral direction (see Fig. 2b, Fig. S1, and Supplementary
Information Note 1 for a more detailed discussion). Upon
the application of negative VG values, traps are filled by
holes. The positively charged traps bend the energy band
of the CNT downward, thereby resulting in the suppres-
sion of ID owing to the enlarged Schottky barrier width at
the drain/CNT junction (left inset of Fig. 2a). A positive
VG ejects the trapped holes, and the consequent upward
band bending leads to the increase in the ID owing to the
narrowing of the Schottky barrier width (right inset of Fig.
2a). Notably, because the interface trap is adjacent to the
CNT channel, the tunneling of holes between them is
relatively fast. Conversely, the diffusion of holes between
surface traps in the lateral direction is relatively slow.
These different hole-movement mechanisms lead to a
semivolatile behavior in the CNT transistor. Figure 2c
shows one example of a ID response following the appli-
cation of a single VG pulse. The low level of the VG pulse
(Vlow=−3 V) is the undisturbed read voltage for the
channel conductance (i.e., −3 V cannot lead to any trap-
ping/detrapping process). Accordingly, the pulse width
was minimized to 5 μs to eliminate any time-cumulative
effects. Before the onset of the measurements, a negative
VG (−6 V, direct current (DC)) was applied for 1 s to
ensure that all the traps were filled by holes at the initial
state. When a single VG pulse was applied, the trapped
holes were ejected to the CNT channel. If the high level of
the VG pulse (Vhigh) was large enough to cause the ejec-
tion of all the trapped holes at the interface and surface
traps (given that there are no holes to refill the traps after
the pulse is removed), the ID change, i.e., the nonvolatile
mode operation, would be maintained over the long term.
By contrast, if Vhigh is not sufficient to cause the ejection
of all the trapped holes (e.g., Vhigh= 0.5 V, as shown in
Fig. 2c), ID temporarily increases and decays to its initial
state subsequently, i.e., the volatile mode operation (Istart,
Ipeak, and Iend, denote the initial, peak, and final ID levels,
respectively). During volatile mode operation, only the
holes at the interface trap are ejected by applying the
pulse, but most of the holes at the surface trap remain.
After the pulse ends, surface traps act as reservoirs of
holes and help refill the empty interface traps, which
results in the gradual recovery of ID. Consequently, the
level of Vhigh determines the operation mode of the
semivolatile CNT transistor. Figure 2d shows the sum-
marized channel conductance change (defined as ΔG)
according to the level of Vhigh. Here, the amount of short-
term enhancement in ID is defined as ΔGST= (Ipeak− Istart)/
Istart, and the amount of long-term change in ID is defined

as ΔGLT= (Iend− Istart)/Istart. Notably, ΔGLT is zero until
Vhigh attains a value of 2.5 V, which indicates that there is
only a temporary change in the drain current. Moreover,
ΔGLT gradually increases once Vhigh exceeds 2.5 V. There-
fore, the semivolatile CNT transistor has two switchable
operation modes, which can be controlled by adjusting the
Vhigh level.
As mentioned above, the volatile behavior can be

exploited to emulate neuronal functions. When a series of
pulses (referred to as presynaptic spikes, Vpre) are applied
to the volatile CNT transistor, ΔGST is dependent on the
frequency of Vpre (fpre). Figure 2e shows one example of
the transient ID behavior when a train of five pulses for
which fpre= 105 Hz is applied, and Fig. 2f shows the
summarized ΔGST values according to fpre. As the interval
of each pulse becomes shorter (fpre increases), larger
cumulative ID enhancement leads to higher Ipeak values.
By contrast, as the interval of the pulse train increases, the
decaying ID becomes more dominant, and Ipeak is sup-
pressed. Therefore, the volatile CNT transistor can
emulate the neuronal leaky-integration function that
corresponds to the frequency of the input stimulus.
Additionally, the compact circuit model for the volatile
CNT transistor is implemented (see also Fig. S2 and
Supplementary Information Note 2). Different temporal
responses in the tunneling/diffusion processes can be
emulated with two resistor–capacitor circuits that have
different time constants. As shown in Fig. 2c, e (yellow
dotted curves), the circuit model can capture the mea-
sured results with high accuracy. This circuit model can
be combined with the circuit model for other components
in our tactile sensor system, which allows a quantitative
analysis of the entire system through the circuit simula-
tion (this concept will be discussed later).
The operations of each component in our tactile sensor

system will be discussed in the order of signal flow,
wherein all signal flows are manipulated with custom-
made software (the detailed experimental setup is pre-
sented Fig. S3 in Supplementary Information Note 3).
First, the pressure stimulus was detected by a previously
demonstrated tactile sensor device (Fig. 3a)26 that was
fabricated with the use of the percolated solution that
processed 99% of the metallic CNTs owing to their high
bendability and material uniformity. The pressure sti-
mulus leads to resistance changes in the tactile sensor
(ΔRsensor) in the range of 2.5–10MΩ (Fig. 3b). The value
of ΔRsensor is then converted to the frequency of the
presynaptic spike (Vpre) by the VCO (Fig. 3c—the detailed
design of the VCO is presented Fig. S4 in Supplementary
Information Note 4). As the pressure intensity increases,
Vpre oscillations are generated at an increasingly higher
frequency (Fig. 3d). Consequently, fpre varies proportion-
ally to the pressure intensity (Fig. 3e). Notably, because
the VCO is designed based on a conventional digital
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circuit, the signal conversion (Rsensor versus fpre) can be
characterized accurately by circuit simulations (Fig. 3e).
Subsequently, the output of the VCO (Vpre) was deliv-

ered to the neuronal device, i.e., to the volatile CNT
transistor (Fig. 4a). Among our 10 × 10 CNT transis-
tors27,28, one selected CNT transistor served as the neu-
ronal device that operated in volatile mode. The other
10 × 4 CNT transistors acted as a synaptic network that
operated in a nonvolatile mode to classify the pattern of
input pressure (as discussed in a subsequent part of this
section). When the pressure stimulus was detected by the
tactile sensor, Vpre was applied to the gate electrode of the
neuronal device, and a temporal ID enhancement and its
subsequent decay were observed, as shown in Fig. 4b.
Obviously, this transient ID behavior can be captured
accurately through the circuit simulation from the com-
bined VCO model and the volatile CNT transistor model
discussed above. Moreover, the neuronal device can
integrate temporally correlated tactile stimuli. As a proof
of concept, two different tactile patterns in one row
(convex or flat) were used as the target of recognition (Fig.
4c), wherein we defined the convex pattern in the pair
with the number “1” and the flat pattern with “0”.
Therefore, the pattern pairs were labeled “’00”, “01”, “10”,
and “11”. In the experiment, the tactile sensor was
attached to a finger, and the finger was brought close to

the patterns and was moved from left to right. A complete
move/touch action was completed in ≤1 s. When the
tactile sensor passes through the “1” pattern, the pressure
stimulus at the sensor causes a temporal increase in ID.
Moreover, the “0” pattern cannot cause any change in ID.
Figure 4d shows the transient ID responses according to
the different tactile patterns. Note that the “11” pattern
leads to the largest ID change because this pattern pro-
vides two successive pressure stimuli. Interestingly,
although both the “01” and “10” patterns have only one
convex pattern, the timing information of the two pat-
terns are different. The response to the “10” pattern
decays earlier than the response to the “01” pattern.
Therefore, the ID value attributed to the “01” pattern is
higher than that attributed to the “10” pattern. Because
the responses to the pattern pairs are distinguishable,
these responses can be used as specific features for
recognition.
Finally, the biorealistic perceptual learning and recog-

nition processes are demonstrated. In principle, the
transient ID responses after the completion of the move/
touch action are sampled. For example, ID is sampled after
a period of 1 s at 0.1 s intervals (i.e., ID(ti) where i= 1 to
m, Fig. 5a). The input vector Ui is defined as the nor-
malized ID(ti): Ui= ID(ti)/Iref, where 0 ≤ Ui ≤ 1. Next, the
boundary vectors (Wj, where j= 1 to n) are defined as the

Fig. 3 The tactile seonsor device co-integrated with the VCO circuit. a Photograph of the tactile sensor device. b Resistance change in the tactile
sensor (ΔRsensor) according to the pressure intensity. c Photograph of the VCO integrated on the printed circuit board. d The output of the VCO (Vpre)
according to ΔRsensor. Higher pressure intensity leads to higher oscillation frequency fpre. e Variation in fpre as a function of Rsensor that shows the
consistency with the simulation results obtained based on the circuit model of the VCO.
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references for the classification of Ui. In our experiment,
four boundary vectors, namely, W1, W2, W3, and W4 (n=
4), correspond to the tactile patterns of “00”, “01”, “10”,
and “11”, respectively (the dotted curves in Fig. 5a). Based
on the Euclidean distance between Ui and Wj, the tactile
pattern that corresponds to Ui can be inferred. Therefore,
two processes need to be performed iteratively: (1) the
learning process for determining Wj with the labeled Ui

and (2) the recognition process based on the calculation
of the Euclidean distance between Ui and Wj. These
learning and recognition processes are similar to the k-
nearest neighbors (KNN) algorithm, and they can be
performed efficiently with a resistive crossbar array6. Wj

can be directly mapped as a set of weights in the non-
volatile CNT transistor array in a columnwise fashion, i.e.,
to theWmatrix (W= [W1 W2 W3 W4]; thus, the size ofW
is m × n, Fig. 5b). The weights are in turn linearly mapped
to the device conductance values. Additionally, to calcu-
late the Euclidean distance, the S matrix (of size 1 × n)
should be included6. Thus, an (m+ 1) × n nonvolatile
CNT transistor array (referred to as the synaptic network

wherein m= 9 and n= 4) was exploited in our
experiment.
The details of the learning and recognition processes are

presented in Fig. S5 in Supplementary Information Note
5. In brief (Fig. 5c), during the learning process, W and S
are iteratively updated according to the designed learning
rule. The learning rule was based on a supervised scheme
using the label Ui. By using the update-verify feedback
method28,29, the device conductance in the synaptic net-
work was updated and had an increased accuracy as
desired. Herein, because the device conductance (weight)
should be maintained over a long period, the CNT tran-
sistors in the synaptic network should be operated in a
nonvolatile mode. Therefore, pulses with sufficiently large
Vhigh and Vlow values were applied to the gate electrode
(Vhigh=+8 V, and Vlow=−9 V) to update the device
conductance. Moreover, during the recognition process,
only a small DC bias (Vhigh=Vlow=VG,read=−3 V) was
applied to the gate electrodes of all the CNT transistors to
read the device conductance. Instead, Ui was converted
according to the drain voltage magnitude (0 V ≤VD, Ui ≤ 2 V).

Fig. 4 Two different tactile patterns as the target of recognition. a Photograph of the entire tactile sensor system mounted on a hand in which
the tactile sensor is attached to the fingertip and the VCO is attached to the back of the hand. The output of the VCO is transmitted to the CNT
transistor array through the measurement equipment (see Supplementary Information Note 3). Among the 10×10 CNT transistors, one selected
transistor serves as the neuronal device. The other 10×4 transistors serve as the synaptic network. b Measured ID response of the neuronal device
according to the pressure stimuli, where the simulation obtained through the combined circuit model between the VCO and the neuronal device
can accurately capture the measured data. c Photographs showing the pattern pairs and their corresponding two-bit binary code labels. d Typical ID
responses of the neuronal devices for three types of pattern pairs.
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The sum of the total source currents for each column
represented the sum of the product of VD,Ui and Wj

(∑IS,Cj= ∑VD,Ui ∙Wj). As a result, as the ∑IS,Cj values
obtained from a particular column in the synaptic net-
work increased, the Euclidean distance between Ui and
Wj—which was recorded in the column—decreased. Fig-
ure 5d shows the updating of the weights in the W matrix
during the iterative learning process, wherein each col-
umn represents Wj. All the weights were randomly
assigned to an initial state. As the leaning process was
repeated, the weights were adjusted to adhere to W4(i) >
W3(i) > W2(i) > W1(i). Subsequently, when Ui (without a
label) was input to the learned matrix, the tactile pattern
could be inferred through the column that generated the

largest output current. As shown in Fig. 5e, a recognition
error rate less than 5% can be obtained through 50 or
more learning iterations. Therefore, our perceptual sen-
sory system can be improved by learning repeated stimuli
and can achieve a performance that is very close to the
biological sensory system.

Conclusions
In summary, our tactile sensor system was based on the

semivolatile CNT transistor device and was composed of
a tactile sensor, VCO, neuronal device, and synaptic
network. It captured essential morphological and func-
tional similarities related to the biological sensory system.
Our tactile sensor system can distinguish temporally

Fig. 5 The learning and recognition processes in the CNT transistor array. a Example of boundary vectors (Wj) and the measured data. By
calculating the Euclidean distance between the measured data and each boundary vector and by finding the minimum distance, the tactile pattern
that generates the measured data can be inferred. b Mapping the process of the Euclidean distance calculation onto the 10×4 CNT transistor array
(synaptic network). All the boundary vectors W1, W2, W3, and W4 can be directly mapped as weights in the 9×4 CNT transistor array (W matrix) in a
columnwise fashion. Additionally, the 1×4smatrix is included in the synaptic network. The input vector is coded using pulses with different levels and
is then applied to the drain of the CNT transistor in the row direction. The integrated currents at the column outputs allow direct comparisons of the
Euclidean distances. The highest column current (∑IS,Cj) represents the shortest Euclidean distance between Ui andWj. c Flowchart of the learning and
recognition processes. d The measured evolution of the W matrix weights (i.e., device conductance of each CNT transistor) during the iterative
learning process. Each column represents the corresponding boundary vector. e The recognition error rate as a function of the learning iterations.
Each data point is the averaged error rate following 30 repetitions.
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correlated pressure stimuli, and the features of tactile
patterns can be extracted for pattern recognition. Note
that the recognition accuracy can be improved through an
iterative learning process, thus illustrating a similarity to
biological perceptual learning processes. In addition to the
prior attempts executed to capture the similarities of the
human sensory system, the developed circuit models of
our tactile sensor system enabled a quantitative analysis of
the entire system that achieved product-level feasibility
based on its similarity with existing digital circuits.
Moreover, the developed learning and recognition pro-
cesses can be equally applicable to other advanced sen-
sors30–33.
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