Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GITR exacerbates lysophosphatidylcholine-induced macrophage pyroptosis in sepsis via posttranslational regulation of NLRP3

Abstract

The NLRP3 inflammasome functions as an inflammatory driver, but its relationship with lipid metabolic changes in early sepsis remains unclear. Here, we found that GITR expression in monocytes/macrophages was induced by lysophosphatidylcholine (LPC) and was positively correlated with the severity of sepsis. GITR is a costimulatory molecule that is mainly expressed on T cells, but its function in macrophages is largely unknown. Our in vitro data showed that GITR enhanced LPC uptake by macrophages and specifically enhanced NLRP3 inflammasome-mediated macrophage pyroptosis. Furthermore, in vivo studies using either cecal ligation and puncture (CLP) or LPS-induced sepsis models demonstrated that LPC exacerbated sepsis severity/lethality, while conditional knockout of GITR in myeloid cells or NLRP3/caspase-1/IL-1β deficiency attenuated sepsis severity/lethality. Mechanistically, GITR specifically enhanced inflammasome activation by regulating the posttranslational modification (PTM) of NLRP3. GITR competes with NLRP3 for binding to the E3 ligase MARCH7 and recruits MARCH7 to induce deacetylase SIRT2 degradation, leading to decreasing ubiquitination but increasing acetylation of NLRP3. Overall, these findings revealed a novel role of macrophage-derived GITR in regulating the PTM of NLRP3 and systemic inflammatory injury, suggesting that GITR may be a potential therapeutic target for sepsis and other inflammatory diseases.

GITR exacerbates LPC-induced macrophage pyroptosis in sepsis via posttranslational regulation of NLRP3. According to the model, LPC levels increase during the early stage of sepsis, inducing GITR expression on macrophages. GITR not only competes with NLRP3 for binding to the E3 ligase MARCH7 but also recruits MARCH7 to induce the degradation of the deacetylase SIRT2, leading to decreasing ubiquitination but increasing acetylation of NLRP3 and therefore exacerbating LPC-induced NLRP3 inflammasome activation, macrophage pyroptosis and systemic inflammatory injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315:801–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. van der Poll T, van de Veerdonk FL, Scicluna BP, Netea MG. The immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol. 2017;17:407–20.

    Article  PubMed  Google Scholar 

  3. Samra JS, Summers LK, Frayn KN. Sepsis and fat metabolism. Br J Surg. 1996;83:1186–96.

    CAS  PubMed  Google Scholar 

  4. Van Wyngene L, Vandewalle J, Libert C. Reprogramming of basic metabolic pathways in microbial sepsis: therapeutic targets at last? EMBO Mol Med. 2018;10:8712.

  5. Rathinam VA, Fitzgerald KA. Inflammasome complexes: emerging mechanisms and effector functions. Cell. 2016;165:792–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mangan MSJ, Olhava EJ, Roush WR, Seidel HM, Glick GD, Latz E. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat Rev Drug Discov. 2018;17:588–606.

    Article  CAS  PubMed  Google Scholar 

  7. Wang L, Hauenstein AV. The NLRP3 inflammasome: Mechanism of action, role in disease and therapies. Mol Asp Med. 2020;76:100889.

    Article  CAS  Google Scholar 

  8. Swanson KV, Deng M, Ting JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019;19:477–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Song N, Liu ZS, Xue W, Bai ZF, Wang QY, Dai J, et al. NLRP3 phosphorylation is an essential priming event for inflammasome activation. Mol Cell. 2017;68:185–97.

    Article  CAS  PubMed  Google Scholar 

  10. Niu T, De Rosny C, Chautard S, Rey A, Patoli D, Groslambert M, et al. NLRP3 phosphorylation in its LRR domain critically regulates inflammasome assembly. Nat Commun. 2021;12:5862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. He M, Chiang HH, Luo H, Zheng Z, Qiao Q, Wang L, et al. An acetylation switch of the NLRP3 inflammasome regulates aging-associated chronic inflammation and insulin resistance. Cell Metab. 2020;31:580–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McHugh RS, Whitters MJ, Piccirillo CA, Young DA, Shevach EM, Collins M, et al. CD4+CD25+ immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity. 2002;16:311–23.

    Article  CAS  PubMed  Google Scholar 

  13. Shevach EM, Stephens GL. The GITR-GITRL interaction: co-stimulation or contrasuppression of regulatory activity? Nat Rev Immunol. 2006;6:613–8.

    Article  CAS  PubMed  Google Scholar 

  14. Santucci L, Agostini M, Bruscoli S, Mencarelli A, Ronchetti S, Ayroldi E, et al. GITR modulates innate and adaptive mucosal immunity during the development of experimental colitis in mice. Gut. 2007;56:52–60.

    Article  CAS  PubMed  Google Scholar 

  15. Xiao X, Shi X, Fan Y, Zhang X, Wu M, Lan P, et al. GITR subverts Foxp3+ Tregs to boost Th9 immunity through regulation of histone acetylation. Nat Commun. 2015;6:8266.

    Article  CAS  PubMed  Google Scholar 

  16. Wang B, Zhang W, Jankovic V, Golubov J, Poon P, Oswald EM, et al. Combination cancer immunotherapy targeting PD-1 and GITR can rescue CD8+ T cell dysfunction and maintain memory phenotype. Sci Immunol. 2018;3:7061.

  17. Sabharwal SS, Rosen DB, Grein J, Tedesco D, Joyce-Shaikh B, Ueda R, et al. GITR agonism enhances cellular metabolism to support CD8+ T-cell proliferation and effector cytokine production in a mouse tumor model. Cancer Immunol Res. 2018;6:1199–211.

    Article  CAS  PubMed  Google Scholar 

  18. Shami A, Atzler D, Bosmans LA, Winkels H, Meiler S, Lacy M, et al. Glucocorticoid-induced tumour necrosis factor receptor family-related protein (GITR) drives atherosclerosis in mice and is associated with an unstable plaque phenotype and cerebrovascular events in humans. Eur Heart J. 2020;41:2938–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mu X, Wang P, Wang X, Li Y, Zhao H, Li Q, et al. Identification of a novel antisepsis pathway: sectm1a enhances macrophage phagocytosis of bacteria through activating GITR. J Immunol. 2020;205:1633–43.

    Article  CAS  PubMed  Google Scholar 

  20. Law SH, Chan ML, Marathe GK, Parveen F, Chen CH, Ke LY, An updated review of lysophosphatidylcholine metabolism in human diseases. Int J Mol Sci 2019;20:1149.

  21. Yan Y, Jiang W, Liu L, Wang X, Ding C, Tian Z, et al. Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell. 2015;160:62–73.

    Article  CAS  PubMed  Google Scholar 

  22. Hao H, Cao L, Jiang C, Che Y, Zhang S, Takahashi S, et al. Farnesoid X receptor regulation of the NLRP3 inflammasome underlies cholestasis-associated sepsis. Cell Metab. 2017;25:856–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Martínez-García JJ, Martínez-Banaclocha H, Angosto-Bazarra D, de Torre-Minguela C, Baroja-Mazo A, Alarcón-Vila C, et al. P2X7 receptor induces mitochondrial failure in monocytes and compromises NLRP3 inflammasome activation during sepsis. Nat Commun. 2019;10:2711.

  24. Knee DA, Hewes B, Brogdon JL. Rationale for anti-GITR cancer immunotherapy. Eur J Cancer. 2016;67:1–10.

    Article  CAS  PubMed  Google Scholar 

  25. Zhu K, Baudhuin LM, Hong G, Williams FS, Cristina KL, Kabarowski JH, et al. Sphingosylphosphorylcholine and lysophosphatidylcholine are ligands for the G protein-coupled receptor GPR4. J Biol Chem. 2001;276:41325–35.

    Article  CAS  PubMed  Google Scholar 

  26. Kabarowski JH, Zhu K, Le LQ, Witte ON, Xu Y. Lysophosphatidylcholine as a ligand for the immunoregulatory receptor G2A. Science. 2001;293:702–5.

    Article  CAS  PubMed  Google Scholar 

  27. Ludwig MG, Vanek M, Guerini D, Gasser JA, Jones CE, Junker U, et al. Proton-sensing G-protein-coupled receptors. Nature. 2003;425:93–98.

    Article  CAS  PubMed  Google Scholar 

  28. Li R, Guan Z, Bi S, Wang F, He L, Niu X, et al. The proton-activated G protein-coupled receptor GPR4 regulates the development of osteoarthritis via modulating CXCL12/CXCR7 signaling. Cell Death Dis. 2022;13:152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Scumpia PO, Delano MJ, Kelly-Scumpia KM, Weinstein JS, Wynn JL, Winfield RD, et al. Treatment with GITR agonistic antibody corrects adaptive immune dysfunction in sepsis. Blood. 2007;110:3673–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Song H, Liu B, Huai W, Yu Z, Wang W, Zhao J, et al. The E3 ubiquitin ligase TRIM31 attenuates NLRP3 inflammasome activation by promoting proteasomal degradation of NLRP3. Nat Commun. 2016;7:13727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Py BF, Kim MS, Vakifahmetoglu-Norberg H, Yuan J. Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity. Mol Cell. 2013;49:331–8.

    Article  CAS  PubMed  Google Scholar 

  32. Wang D, Zhang Y, Xu X, Wu J, Peng Y, Li J, et al. YAP promotes the activation of NLRP3 inflammasome via blocking K27-linked polyubiquitination of NLRP3. Nat Commun. 2021;12:2674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Watts TH. TNF/TNFR family members in costimulation of T cell responses. Annu Rev Immunol. 2005;23:23–68.

    Article  CAS  PubMed  Google Scholar 

  34. Shi X, Wu W, Feng Z, Fan P, Shi R, Zhang X. MARCH7-mediated ubiquitination decreases the solubility of ATG14 to inhibit autophagy. Cell Rep. 2023;42:113045.

    Article  CAS  PubMed  Google Scholar 

  35. Shi X, Zhang X. Control of ATG14 solubility and autophagy by MARCHF7/MARCH7-mediated ubiquitination. Autophagy. 2024;20:699–700.

    Article  CAS  PubMed  Google Scholar 

  36. Narita T, Weinert BT, Choudhary C.Functions and mechanisms of non-histone protein acetylation. Nat Rev Mol Cell Biol. 2019;20:156-174.

  37. Wang Y, Cao C, Zhu Y, Fan H, Liu Q, Liu Y, et al. TREM2/β-catenin attenuates NLRP3 inflammasome-mediated macrophage pyroptosis to promote bacterial clearance of pyogenic bacteria. Cell Death Dis. 2022;13:771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (31970893, 32270976), the Natural Science Foundation of Guangdong Province (2022A1515012541), the Guangdong Natural Science Fund for Distinguished Young Scholars (2016A030306004), the Fundamental Research Funds for the Central Universities (2023kypt18; 2023ptpy67; 19ykzd39; 19ykpy43), the China Postdoctoral Science Foundation (2022M723661), the 111 Project (No. B12003, B13037) and the Open Project of the Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education (2020kfkt08).

Author information

Authors and Affiliations

Authors

Contributions

SL, JZ, CC, YL, SM, XL, YS, JL, QP and JY conducted the experiments. SL, JZ, and CC acquired the data. SL, YL, SM, and MW provided scientific expertise and reagents. SL and MW designed the studies, analyzed the data, and wrote the manuscript. All the authors read the final version of the manuscript and approved its submission.

Corresponding author

Correspondence to Minhao Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, S., Zhou, J., Cao, C. et al. GITR exacerbates lysophosphatidylcholine-induced macrophage pyroptosis in sepsis via posttranslational regulation of NLRP3. Cell Mol Immunol 21, 674–688 (2024). https://doi.org/10.1038/s41423-024-01170-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-024-01170-w

Keywords

Search

Quick links